参考文献/References:
[1] 童庆禧, 张兵, 郑兰芬. 高光谱遥感[M]. 北京:高等教育出版社, 2006.
[2] 朱艳, 刘晓莉, 杨哲海. 高光谱数据的降维及Tabu搜索算法的应用[J]. 测绘科学技术学报, 2007, 24(1):22-25, 29
[3] ZHONG Yanfei, MA Ailong, ONG Y S, et al. Computational intelligence in optical remote sensing image processing[J]. Applied soft computing, 2018, 64:75-93.
[4] CHENG Gong, HAN Junwei. A survey on object detection in optical remote sensing images[J]. ISPRS journal of photogrammetry and remote sensing, 2016, 117:11-28.
[5] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256
[6] WANG Jianyu, XUE Yongqi, RONG Shu, et al. Airborne hyperspectral and infrared remote sensing technology and application[C]//Proceedings of 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. Shanghai, China, 2006.
[7] HUNG C C, KULKARNI S, KUO B C. A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification[J]. IEEE journal of selected topics in signal processing, 2011, 5(3):543-553.
[8] VILLA A, BENEDIKTSSON J A, CHANUSSOT J, et al. Hyperspectral image classification with independent component discriminant analysis[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(12):4865-4876.
[9] 周千琪. 基于稀疏表示和半监督主动学习的小样本高光谱数据分类问题研究[D]. 银川:北方民族大学, 2016.
[10] 高飞, 朱福利. 基于样本类别确定度的半监督分类[J]. 北京航空航天大学学报, 2018, 44(9):1941-1951
[11] CORTES C, VAPNIK V. Support vector networks[J]. Machine learning, 1995, 20(3):273-297.
[12] KUMAR M A, GOPAL M. Least squares twin support vector machines for pattern classification[J]. Expert systems with applications, 2009, 36(4):7535-7543.
[13] 陈国良, 王煦法, 庄镇泉, 等. 遗传算法及其应用[M]. 北京:人民邮电出版社, 1996.
[14] 张明阳. 基于进化优化学习的高光谱特征选择与提取[D]. 西安:西安电子科技大学, 2018.
[15] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11(4):341-359.
[16] 刘明广. 差异演化算法及其改进[J]. 系统工程, 2005, 23(2):108-111
相似文献/References:
[1]赵春晖,刘凡.基于改进自组织竞争神经网络的高光谱图像分类[J].应用科技,2009,36(08):8.[doi:10.3969/j.issn.1009-671X.2009.08.003]
ZHAO Chun-hui,LIU Fan.An improved hyperspectral remote sensing image classification method based on SOFM neural network[J].Applied science and technology,2009,36(05):8.[doi:10.3969/j.issn.1009-671X.2009.08.003]
[2]王立国,吴国峰.结合FDA与NMF的高光谱数据解混方法[J].应用科技,2011,38(12):20.[doi:10.3969/j.issn.1009-671X.2011.12.005]
WANG Liguo,WU Guofeng.Combining Fisher discriminant analysis with nonnegative matrix factorization by perspectral data unmixing[J].Applied science and technology,2011,38(05):20.[doi:10.3969/j.issn.1009-671X.2011.12.005]
[3]房森,焦淑红.分组寻优的多端元高光谱图像解混方法[J].应用科技,2019,46(06):20.[doi:10.11991/yykj.201903005]
FANG Sen,JIAO Shuhong.Multi-endmember hysperspectral image unmixing based on group optimization[J].Applied science and technology,2019,46(05):20.[doi:10.11991/yykj.201903005]
[4]池辛格,王立国.结合局部全局一致性和支持向量机的半监督分类方法[J].应用科技,2021,48(1):48.[doi:10.11991/yykj.202009014]
CHI Xinge,WANG Liguo.Semi-supervised classification method combining local and global consistency and support vector machine[J].Applied science and technology,2021,48(05):48.[doi:10.11991/yykj.202009014]