[1]贾鹤鸣,韩骏骋,张森,等.基于CFD的玻璃温室环境数值模拟及优化分析[J].应用科技,2019,46(05):28-33.[doi:10.11991/yykj.201901005]
 JIA Heming,HAN Juncheng,ZHANG Sen,et al.Numerical analysis simulation and optimization of the environment in glass greenhouse based on CFD[J].Applied science and technology,2019,46(05):28-33.[doi:10.11991/yykj.201901005]
点击复制

基于CFD的玻璃温室环境数值模拟及优化分析(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年05期
页码:
28-33
栏目:
机电工程
出版日期:
2019-09-05

文章信息/Info

Title:
Numerical analysis simulation and optimization of the environment in glass greenhouse based on CFD
作者:
贾鹤鸣 韩骏骋 张森 孙康健 李瑶
东北林业大学 机电工程学院, 黑龙江 哈尔滨 150040
Author(s):
JIA Heming HAN Juncheng ZHANG Sen SUN Kangjian LI Yao
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
关键词:
计算流体力学玻璃温室气流运动温度场速度场多孔介质数值模拟均匀性结构优化
Keywords:
CFDglass greenhouseair movementtemperature fieldvelocity fieldporous mediumnumerical simulationuniformitystructure optimization
分类号:
TP273
DOI:
10.11991/yykj.201901005
文献标志码:
A
摘要:
为进一步研究和优化玻璃温室内部气流场及温度场的分布,基于计算流体力学(computational fluid dynamics, CFD)对东北地区玻璃温室内部气流场进行三维建模数值分析,分析得出内部速度场、温度场的分布模式,并针对温室内部气流分布情况提出3种结构优化策略。模拟结果表明:监测点处的气流速度及温度的平均相对误差分别为5.54%、4%,数值模拟结果与试验测试结果吻合度较高。3种优化方案结果均优于初始方案,其中通过分析得出方案三将暖风扇置于离地0.7 m处的为最佳方案,植物区域处于最适风速的部分增加了50%,气流均匀性最好且平均温度为23.49 ℃,有效改善了温室内环境并使其更加适宜植物的培养。
Abstract:
In order to further study and optimize the distribution of air flow and temperature field in glass greenhouse, a numerical analysis of the three-dimensional modeling of air flow field in glass greenhouse in the Northeast China based on computational fluid dynamics (CFD) is carried out in this paper. Then the distribution patterns of internal velocity field and temperature field are derived, and three structural optimization strategies are put forward according to the distribution of air flow in glass greenhouse. The simulation results show that the average relative errors of gas velocity and temperature at the monitoring points are 5.54% and 4%, respectively. The numerical simulation results are in good agreement with the experimental results. The results of these three optimization schemes are better than the initial ones. The best scheme is the third one, in which the warm fan is placed at 0.7 m away from the ground. The optimum wind speed is increased by 50% in the plant area. The air flow uniformity is the best and the average temperature is 23.49℃. It can effectively improve the greenhouse environment and make it more suitable for plant cultivation.

参考文献/References:

[1] 程秀花, 毛罕平, 伍德林, 等. 栽有番茄的玻璃温室内气流场分布CFD数值模拟[J]. 江苏大学学报(自然科学版), 2010, 31(5):510-514
[2] 汪郑邦. 现代温室供热系统的设计及运行模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2006:79-80.
[3] 刘文合, 杨英英, 徐占洋. 基于CFD方法的温室散热系统结构优化模拟研究[J]. 灌溉排水学报, 2016, 35(4):8-13
[4] 周伟, 汪小旵, 李永博. 可变边界条件下的Venlo温室温度场三维非稳态模拟[J]. 农业机械学报, 2014, 45(11):304-310
[5] 张伟建, 王新忠, 李亮亮, 等. 夏季屋顶全开型温室遮阳网降温调控的CFD分析[J]. 江苏农业科学, 2017, 45 (19):253-256.
[6] 刘焕. 基于CFD的人工光型植物工厂通风模拟与优化研究[D]. 北京:中国农业科学院, 2018:10-29.
[7] 段明辉. 冬季温室数值分析研究[D]. 哈尔滨:东北农业大学, 2014:7-9.
[8] 张艺萌. 基于CFD的寒地水稻育秧大棚环境数值模拟分析与研究[D]. 大庆:黑龙江八一农垦大学, 2018:28-54.
[9] 宿文, 薛晓萍, 熊宇, 等. 自然通风对日光温室气温影响的模拟分析[J]. 生态学杂志, 2016, 35(6):1635-1642
[10] 赵杰强, 赵云. 机械通风连栋温室的温度场CFD模拟[J]. 中国农机化学报, 2014, 35(6):76-79
[11] 何国敏. 现代化温室温度场数字化模拟研究[D]. 南京:南京农业大学, 2011:50-67.
[12] 沈敏. 食用菌工厂菇房内环境的模拟验证与优化研究[D]. 镇江:江苏大学, 2016:23-41.
[13] 吴飞青. 温室冬季热环境数值分析与实验研究[D]. 杭州:浙江工业大学, 2010:41-71.
[14] 刘焕. 基于CFD的人工光型植物工厂通风模拟与优化研究[D]. 北京:中国农业科学院, 2018:4.
[15] 张芳, 方慧, 杨其长, 等. 基于CFD模型的大跨度温室自然通风热环境模拟[J]. 中国农业气象, 2017, 38(4):221-229

相似文献/References:

[1]银建中,程绍杰,贾凌云,等.搅拌式反应器内固-液两相悬浮特性的CFD模拟[J].应用科技,2009,36(11):11.[doi:10.3969/j.issn.1009-671X.2009.11.003]
 YIN Jian-Zhong,CHENG Shao-Jie,JIA Ling-Yun,et al.CFD simulation of solid-liquid suspension characteristics in stirred tank reactor[J].Applied science and technology,2009,36(05):11.[doi:10.3969/j.issn.1009-671X.2009.11.003]
[2]胡健,李聪慧,张维鹏,等.基于CFD的桨舵水动力干扰研究[J].应用科技,2017,44(03):5.[doi:10.11991/yykj.201607005]
 HU Jian,LI Conghui,ZHANG Weipeng,et al.Investigation of hydrodynamic interaction between propeller and rudder based on computational fluid dynamics[J].Applied science and technology,2017,44(05):5.[doi:10.11991/yykj.201607005]
[3]胡健,郭磊,李聪慧,等.近自由面水翼性能分析[J].应用科技,2017,44(04):5.[doi:10.11991/yykj.201607010]
 HU Jian,GUO Lei,LI Conghui,et al.Hydrodynamic performance analysis of hydrofoil in the vicinity of free surface[J].Applied science and technology,2017,44(05):5.[doi:10.11991/yykj.201607010]
[4]姚国英,柯永胜.RANS方法预报对转桨非定常水动力性能研究[J].应用科技,2019,46(03):7.[doi:10.11991/yykj.201808001]
 YAO Guoying,KE Yongsheng.Using RANS method to predict the unsteady hydrodynamic performance of contra-rotating propellers[J].Applied science and technology,2019,46(05):7.[doi:10.11991/yykj.201808001]

备注/Memo

备注/Memo:
收稿日期:2019-01-07。
基金项目:国家自然科学基金项目(51609048)
作者简介:贾鹤鸣,男,副教授,博士
通讯作者:贾鹤鸣,E-mail:jiaheminglucky99@126.com
更新日期/Last Update: 2019-08-29