[1]束学道,郑学著,李又春,等.带凸缘深锥形薄壁回转件旋压成形工艺分析[J].应用科技,2019,46(05):15-21.[doi:10.11991/yykj.201901011]
 SHU Xuedao,ZHENG Xuezhu,LI Youchun,et al.Analysis on the spinning process of deep conical thin-walled rotary parts with flange[J].Applied science and technology,2019,46(05):15-21.[doi:10.11991/yykj.201901011]
点击复制

带凸缘深锥形薄壁回转件旋压成形工艺分析(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年05期
页码:
15-21
栏目:
机电工程
出版日期:
2019-09-05

文章信息/Info

Title:
Analysis on the spinning process of deep conical thin-walled rotary parts with flange
作者:
束学道1 郑学著2 李又春2 杨云峰2 王云3 李子轩1 王雨1
1. 宁波大学 机械工程与力学学院, 浙江 宁波 315211;
2. 中国航发南方工业有限公司, 湖南 株洲 412000;
3. 南昌航空大学 飞行器工程学院, 江西 南昌 330063
Author(s):
SHU Xuedao1 ZHENG Xuezhu2 LI Youchun2 YANG Yunfeng2 WANG Yun3 LI Zixuan1 WANG Yu1
1. Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China;
2. AECC South Industry Co., Ltd., Zhuzhou 412000, China;
3. School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China
关键词:
多工步热旋压带凸缘深锥形薄壁回转件高温合金芯模转速壁厚均匀性应力应变场恒定线速度
Keywords:
multi-stephot spinningdeep conical thin-walled rotary part with flangesuperalloymandrel speedwall thickness uniformitystress-strain fieldconstant linear speed
分类号:
TH162
DOI:
10.11991/yykj.201901011
文献标志码:
A
摘要:
带凸缘深锥形薄壁回转件作为航空发动机钣金机匣类零件的一种,通常由锥形件和凸缘环2部分焊接组成,具有材料难成形、易破裂等特点。针对焊接易导致零件产生变形降低加工精度的难题,提出了多工步整体热旋成形零件方法。基于Simufact.forming软件,对高温合金GH3030进行4道次的热旋成形仿真,分析了应力应变场变化,发现零件锥形部分应力应变分布均匀,而凸缘环与锥形件过渡部分应力应变较大;芯模分段不同转速保持恒定线速度的成形方法可确保深锥形件的壁厚均匀性。分析结果表明,该多工步整体热旋成形工艺可行,为带凸缘深锥形薄壁回转件的旋压成形提供了理论基础。
Abstract:
As a kind of aeroengine sheet metal casing parts, deep conical thin-walled rotary part with flange is composed of conical part and flange, which are welded together. It is difficult to form and easy to crack. Aiming at the problem that welding can easily lead to serious deformation and reduce processing accuracy, a multi-step hot spinning method for forming this part is proposed. Based on the software Simufact.forming, the stress-strain field of superalloy GH3030 is analyzed by four-pass hot spinning simulation, finding that the stress-strain distribution of conical part is uniform, while the stress-strain distribution of transition part between conical part and flange is large. The forming method for mandrel in different positions with different rotational speeds to keep constant linear speed can ensure uniformity of the wall thickness of deep conical part. The results show that the multi-step hot spinning method is feasible and provides a theoretical basis for spinning deep conical thin-walled part with flange.

参考文献/References:

[1] 赵云豪. 高温合金旋压塑性变形稳定性试验研究[J]. 锻压技术, 2003(5):47-50
[2] 王大力, 郭亚明, 王宇, 等. 镍基高温合金筒形件毛坯错距旋压工艺研究[J]. 新技术新工艺, 2016(2):12-15
[3] 刘继强, 李茂盛, 贾新朝, 等. 高精度高温合金薄壁管旋压成形[J]. 宇航材料工艺, 1999, 29(6):51-53
[4] 黎波, 袁其炜, 靳凯, 等. GH625高温合金管缩径旋压成形数值模拟及试验研究[J]. 航空制造技术, 2017(18):36-42
[5] 安震, 李金山, 胡锐, 等. NI-CR-W-Mo合金异型件热旋成形的质量分析[J]. 科技导报, 2012, 30(3):30-34
[6] LI Yonghua, FAN Tao, ZHANG Ning. Research on ball spinning forming of superalloy Inconel 718 thin-walled tube[J]. Advanced materials research, 2011, 189-193:2742-2745.
[7] HIUHU J. Shear spinning of super alloys and stainless steel[D]. Trollhättan, Sweden:University West, 2015.
[8] 陆鹏, 赵亚楠, 张艳秋, 等. 镍钛形状记忆合金管滚珠热旋压成形数值模拟[J]. 应用科技, 2013, 40(4):73-78
[9] 陆鹏, 赵亚楠, 张艳秋, 等. 基于不同减薄量的镍钛合金管热旋压成形分析[J]. 应用科技, 2013, 40(1):1-7
[10] 陈适先, 贾文铎, 曹庚顺, 等. 强力旋压工艺与设备[M]. 北京:国防工业出版社, 1986.
[11] 王成和, 刘克璋, 周路. 旋压技术[M]. 福州:福建科学技术出版社, 2017.
[12] 王雨, 束学道, 田端阳, 等. 工艺参数对薄壁锥形旋压件凸缘平直度的影响[J]. 机械科学与技术, 2017, 36(7):1068-1072

相似文献/References:

[1]陆鹏,赵亚楠,张艳秋,等.基于不同减薄量的镍钛合金管热旋压成形分析[J].应用科技,2013,40(01):1.[doi:10.3969/j.issn.1009-671X.201301015]
 LU Peng,ZHAO Yanan,ZHANG Yanqiu,et al.Deformation analysis of hot spinning of NiTi alloy tube based on different wall thickness reduction[J].Applied science and technology,2013,40(05):1.[doi:10.3969/j.issn.1009-671X.201301015]

备注/Memo

备注/Memo:
收稿日期:2019-01-05。
基金项目:国家自然科学基金项目(51475247);浙江省基金重点项目(LZ17E050001)
作者简介:束学道,男,教授,博士
通讯作者:李子轩,E-mail:lizixuan@nbu.edu.cn
更新日期/Last Update: 2019-08-29