[1]张博雅,周涛,李晟.超临界CO2流体萃取U(Ⅵ)实验研究[J].应用科技,2019,46(05):73-75,79.[doi:10.11991/yykj.201901012]
 ZHANG Boya,ZHOU Tao,LI Sheng.Study on U(VI) extraction by supercritical CO2 fluid[J].Applied science and technology,2019,46(05):73-75,79.[doi:10.11991/yykj.201901012]
点击复制

超临界CO2流体萃取U(Ⅵ)实验研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年05期
页码:
73-75,79
栏目:
核科学技术与应用
出版日期:
2019-09-05

文章信息/Info

Title:
Study on U(VI) extraction by supercritical CO2 fluid
作者:
张博雅123 周涛123 李晟4
1. 华北电力大学 核科学与工程学院, 北京 102206;
2. 华北电力大学 核热工安全与标准化研究所, 北京 102206;
3. 非能动核能安全技术北京市重点实验室, 北京 102206;
4. 南华大学 核科学技术学院, 湖南 衡阳 421001
Author(s):
ZHANG Boya123 ZHOU Tao123 LI Sheng4
1. School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China;
2. Institute of Nuclear Thermal-hydraulic Safety and Standardization, North China Electric Power University, Beijing 102206, China;
3. Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206, China;
4. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
关键词:
超临界CO2TBP-HNO3铀(VI)萃取络合剂后处理乏燃料溶解度
Keywords:
supercritical CO2TBP-HNO3uranium (VI)extractioncomplexing agentpost-treatmentspent nuclear fuelsolubility
分类号:
TL99
DOI:
10.11991/yykj.201901012
文献标志码:
A
摘要:
为探究温度、压力、络合剂用量、萃取时间对铀萃取率的影响,探寻最佳萃取值,将标准铀溶液滴加在滤纸上模拟固态铀萃取。用磷酸三丁酯(TBP)-HNO3做络合剂,超临界CO2(scCO2)做萃取剂,进行实验。结果显示:萃取率随着络合剂的增多而增加,达到一定用量时再增加络合剂,萃取率提升较缓慢,最佳取TBP/铀摩尔比70;萃取率随温度升高先上升后下降,在60 ℃时达到最大值;萃取率随压力增加而增加,压力达到20 MPa后萃取率上升缓慢,最佳萃取压力为20 MPa;萃取率随着萃取时间的延长增高,萃取150 min之后,萃取率基本不变,一般萃取120 min即可。
Abstract:
In order to investigate the influence of different physical factors such as temperature, pressure, dosage of complexing agent and extraction time on the extraction rate of uranium by supercritical extraction, the standard uranium solution was added dropwise to the filter paper to simulate the extraction of solid uranium. TBP-HNO3 was used as complexing agent and supercritical CO2 was used as extracting agent to simulate solid uranium extraction. The results showed that the extraction rate increased with the increase of complexing agent; When reaching a certain dosage, add the complexing agent, and the extraction rate was slowly increased; The optimum molar ratio of TBP to uranium was 70; The extraction rate first rose and then decreased with the increase of temperature, reaching the maximum at 60℃; The extraction rate increased with the increase of pressure, and increased slowly after the pressure reached 20 MPa, and the optimal extraction pressure was 20 MPa; The extraction rate increased with the extension of extraction time, and after 150 min of extraction, the extraction rate was basically unchanged, generally 120 min was enough.

参考文献/References:

[1] 王少芬, 魏建谟. 超临界流体萃取技术在核废料处理方面的应用[J]. 应用化学, 2003, 20(5):409-414
[2] 鲁泽潇, 丁有钱, 宋志君, 等. 超临界CO2流体萃取金属离子研究现状[C]//中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集第6册(核化工分卷、核化学与放射化学分卷、辐射物理分卷). 威海, 中国, 2017:10.
[3] 吴芳, 李雄山, 陈乐斌. 超临界流体萃取技术及其应用[J]. 广州化工, 2018, 46(2):19-20, 23
[4] 段筱薇. 超临界流体萃取技术的发展及应用[J]. 广东蚕业, 2018, 52(4):35
[5] 郝刘丹, 刘一凡, 赵孟姣, 等. 木质纤维素的超临界二氧化碳预处理技术[J]. 应用科技, 2014, 41(5):70-75
[6] 张昱, 徐琴琴, 银建中. 超临界流体技术在石墨烯制备中的应用[J]. 应用科技, 2015, 42(5):72-77
[7] 李琪, 银建中. 超临界二氧化碳和离子液体微乳液体系的热力学性质及应用[J]. 应用科技, 2015, 42(1):70-74
[8] 宋志君, 于震, 梁小虎, 等. 超临界CO2流体萃取技术在微量铀提取上的应用[J]. 中国原子能科学研究院年报, 2012:177
[9] 朱礼洋, 文明芬, 段五华, 等. 超临界流体萃取技术在乏燃料后处理中的应用[J]. 化学进展, 2011, 23(7):1308-1315
[10] PITCHAIAH K C, SUJATHA K, DEEPITHA J, et al. Recovery of uranium and plutonium from pyrochemical salt matrix using supercritical fluid extraction[J]. The journal of supercritical fluids, 2019, 147:194-204.
[11] 段五华, 景山, 朱永, 等. 超临界流体络合萃取镧系和锕系元素的研究进展[J]. 原子能科学技术, 2007, 41(4):429-437
[12] 李佳, 朱常桂, 刘小龙, 等. 超临界CO2从含铀氧化物粉末中直接萃取铀方法研究[J]. 核动力工程, 2013, 34(3):24-27, 62

相似文献/References:

[1]梁向东,银建中.实验与MD模拟探究基于LS-45的超临界CO2微乳液结构[J].应用科技,2017,44(04):70.[doi:10.11991/yykj.201605021]
 LIANG Xiangdong,YIN Jianzhong.Study on micro-structure of scCO2 microemulsion with LS-45by experiment and molecular dynamics simulation method[J].Applied science and technology,2017,44(05):70.[doi:10.11991/yykj.201605021]
[2]李颖,银建中.含离子液体超临界CO2微乳液的分子模拟[J].应用科技,2018,45(03):87.[doi:10.11991/yykj.201705017]
 LI Ying,YIN Jianzhong.Molecular dynamics simulation of supercritical CO2 microemulsion with ionic-liquid domains[J].Applied science and technology,2018,45(05):87.[doi:10.11991/yykj.201705017]

备注/Memo

备注/Memo:
收稿日期:2019-04-04。
基金项目:国家重点研发计划项目(2016YFC1402500);北京市自然科学基金项目(3172032);中国原子能科学研究院项目(2017-434)
作者简介:张博雅,女,硕士研究生;周涛,男,教授
通讯作者:周涛,E-mail:zhoutao@ncepu.edu.cn
更新日期/Last Update: 2019-08-29