[1]徐慧强,谷海峰,王景富,等.非能动安全壳冷却系统换热器内冷凝换热模型研究[J].应用科技,2019,46(05):67-72.[doi:10.11991/yykj.201903016]
 XU Huiqiang,GU Haifeng,WANG Jingfu,et al.Model research on condensation of steam inside the heat exchanger of the passive containment cooling system in nuclear power plants[J].Applied science and technology,2019,46(05):67-72.[doi:10.11991/yykj.201903016]
点击复制

非能动安全壳冷却系统换热器内冷凝换热模型研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年05期
页码:
67-72
栏目:
核科学技术与应用
出版日期:
2019-09-05

文章信息/Info

Title:
Model research on condensation of steam inside the heat exchanger of the passive containment cooling system in nuclear power plants
作者:
徐慧强1 谷海峰2 王景富1 孙中宁2 陈玉翔1
1. 中国船舶重工集团公司第七〇三研究所, 黑龙江 哈尔滨 150078;
2. 哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001
Author(s):
XU Huiqiang1 GU Haifeng2 WANG Jingfu1 SUN Zhongning2 CHEN Yuxiang1
1. No.703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150078, China;
2. College of Power and Nuclear Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
水平管不凝性气体流动冷凝传热传质换热模型换热系数凝结液膜多组分
Keywords:
horizontal tubenoncondensable gasesconvection condensationheat and mass transfertheoretical model of heat transferheat transfer coefficientcondensate filmmulti-component
分类号:
TL332
DOI:
10.11991/yykj.201903016
文献标志码:
A
摘要:
为研究核电站非能动安全壳冷却系统换热器内含不凝性气体的蒸汽在水平管内强制对流冷凝换热特性,基于Peterson扩散层模型,结合传热传质方程推导,对冷凝换热过程各环节分别进行建模,并同时考虑抽吸效应、液膜非均匀分布和气液界面粗糙度对局部换热能力的影响,最终得到了能够预测蒸汽局部凝结换热系数的计算程序。研究结果证实,该程序可以很好地反映管内各换热环节的变化规律,对管内局部换热系数有着较高的预测精度。此外计算结果表明随着管内气体冷凝过程的推进,各环节换热能力会逐渐发生变化,影响总换热过程的主要热阻也相应随之变化。
Abstract:
For the purpose of analyzing the heat transfer characteristic of forced convection condensation with noncondensable gases inside a horizontal tube for the heat exchanger of the passive containment cooling system(PCCS) in nuclear power plants, based on the Peterson diffusion layer model, a theoretical model has been established by considering all heat transfer processes separately with deduction of heat and mass transfer formula. Besides, by considering the suction effect, the inhomogeneous distribution of the condensate film and the interface roughness of gas and condensate film, a calculating procedure for predicting steam condensation local heat transfer coefficient with noncondensable gases was built up. The accuracy of the present model was studied by comparing the calculated and experimental results and the thermal resistance during condensation was also researched. The results show that the current calculating model and procedure can simulate the variation of each heat transfer components with relatively high accuracy. With the condensation heat transfer process proceeding, the heat transfer ability for each part changes gradually and the major thermal resistance which influences the total heat transfer ability will change correspondingly.

参考文献/References:

[1] AL-SHAMMARI S B, WEBB D R, HEGGS P. Condensation of steam with and without the presence of non-condensable gases in a vertical tube[J]. Desalination, 2004, 169(2):151-160.
[2] OH S, REVANKAR S T. Effect of noncondensable gas in a vertical tube condenser[J]. Nuclear engineering and design, 2005, 235(16):1699-1712.
[3] LEE K Y, KIM M H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube[J]. International journal of heat and mass transfer, 2008, 51(21/22):5333-5343.
[4] DEHBI A A. Analytical and experimental investigation of the effects of non-condensable gases on steam condensation under turbulent natural convection conditions[D]. US:MIT, 1990.
[5] LIU H, TODREAS N E, DRISCOLL M J. An experimental investigation of a passive cooling unit for nuclear plant containment[J]. Nuclear engineering and design, 2000, 199(3):243-255.
[6] CARUSO G, DI MAIO D V, NAVIGLIO A. Condensation heat transfer coefficient with noncondensable gases inside near horizontal tubes[J]. Desalination, 2013, 309:247-253.
[7] CARUSO G, DI MAIO D V, NAVIGLIO A. Film condensation in inclined tubes with noncondensable gases:an experimental study on the local heat transfer coefficient[J]. International communications in heat and mass transfer, 2013, 45:1-10.
[8] WU Tiejun, VIEROW K. Local heat transfer measurements of steam/air mixtures in horizontal condenser tubes[J]. International journal of heat and mass transfer, 2006, 49(15/16):2491-2501.
[9] CHATO J C. Laminar condensation inside horizontal and inclined tubes[J]. ASHRAE journal, 1962, 4(2):52-60.
[10] REN Bin, ZHANG Li, XU Hong, et al. Experimental study on condensation of steam/air mixture in a horizontal tube[J]. Experimental thermal and fluid science, 2014, 58:145-155.
[11] CAVALLINI A, CENSI G, DEL COL D, et al. Condensation inside and outside smooth and enhanced tubes-a review of recent research[J]. International journal of refrigeration, 2003, 26(4):373-392.
[12] PETERSON P F, SCHROCK V E, KAGEYAMA T. Diffusion layer theory for turbulent vapor condensation with noncondensable gases[J]. Journal of heat transfer, 1993, 115(4):998-1003.
[13] 徐慧强, 孙秋南, 谷海峰, 等. 水平管内含空气蒸汽流动冷凝局部换热特性[J]. 化工学报, 2015, 66(7):2456-2463
[14] KUHN S Z, SCHROCK V E, PETERSON P F. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube[J]. Nuclear engineering and design, 1997, 177(1/2/3):53-69.
[15] THOME J R, EL HAJAL J, CAVALLINI A. Condensation in horizontal tubes, part 2:new heat transfer model based on flow regimes[J]. International journal of heat and mass transfer, 2003, 46(18):3365-3387.
[16] GRAHAM D, CHATO J C, NEWELL T A. Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube[J]. International journal of heat and mass transfer, 1998, 42(11):1935-1944.
[17] SIDDIQUE M, GOLAY M W, KAZIMI M S. Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas[J]. Nuclear technology, 1993, 102(3):386-402.
[18] XU Huiqiang, GU Haifeng, SUN Zhongning. Forced convection condensation of steam in the presence of multicomponent noncondensable gases inside a horizontal tube[J]. International journal of heat and mass transfer, 2017, 104:1110-1119.

备注/Memo

备注/Memo:
收稿日期:2019-03-24。
基金项目:国家高科技研究发展计划项目(2012AA050906)
作者简介:徐慧强,男,工程师,博士;孙中宁,男,教授,博士
通讯作者:谷海峰,E-mail:guhaifeng@hrbeu.edu.cn
更新日期/Last Update: 2019-08-29