[1]李延真,郭英雷,彭博.基于模糊聚类的配电网电能质量分级预警[J].应用科技,2020,47(2):59-66.[doi:10.11991/yykj.201905022]
 LI Yanzhen,GUO Yinglei,PENG Bo.Hierarchical early warning of power quality of the distribution network based on the fuzzy clustering method[J].Applied science and technology,2020,47(2):59-66.[doi:10.11991/yykj.201905022]
点击复制

基于模糊聚类的配电网电能质量分级预警(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年2期
页码:
59-66
栏目:
现代电子技术
出版日期:
2020-03-05

文章信息/Info

Title:
Hierarchical early warning of power quality of the distribution network based on the fuzzy clustering method
作者:
李延真 郭英雷 彭博
山东省电力公司青岛供电公司,山东 青岛 266002
Author(s):
LI Yanzhen GUO Yinglei PENG Bo
State Grid Shandong Qingdao Power Supply Company, Qingdao 266002, China
关键词:
配电网电能质量稳态指标预警模糊聚类预测BP神经网络仿真
Keywords:
distribution networkpower qualitysteady indicatorearly warningfuzzy clusteringpredictionBP neural networksimulation
分类号:
TM721
DOI:
10.11991/yykj.201905022
文献标志码:
A
摘要:
现有国家标准中对于电能质量各指标只能判断其是否超标,且各指标限值固定不变,不能根据配电网自身的运行情况和特点进行动态预警。为解决上述问题,本文提出一种电能质量稳态指标分级预警方法。根据不同场景、时间对配电网电能质量的要求,通过将相同电压等级的预警对象进行聚类的方法动态设置其预警阈值,并根据预警阈值的不同,将电能质量分为若干等级。其次,提出基于BP神经网络算法的电能质量预测方法,提高了电能质量稳态指标的预测精度。最后,针对10 kV和35 kV两个电压等级的配电网进行了仿真分析,验证了所提出方法的有效性和实用性。分析证明,该预警方法的实施可提前预知配电网的电能质量情况,以便于提前采取措施,保证配电网安全运行。
Abstract:
In the existing national standards, the indicators of power quality can only be judged whether they exceed the standard. Because the limit value of each index is fixed, dynamic early warning cannot be made according to the running condition of the distribution network. In order to solve the above problems, this paper proposes a hierarchical early warning method for power quality steady indicators. Firstly, according to different requirements for the power quality of distribution network in different scenarios and time, the early warning threshold values are dynamically set by the method of clustering early warning objects having the same voltage level, and the power quality is divided into several grades according to the different early warning threshold values. Secondly, a power quality prediction method based on BP neural network algorithm is proposed to improve the prediction accuracy of power quality steady state indicators. Finally, the simulation analysis of the distribution network with two voltage levels of 10 kV and 35 kV is carried out to verify the effectiveness and practicability of the proposed method. The analysis proves that the implementation of the early warning method can predict the power quality of the distribution network in advance, so that measures are taken in advance to ensure the safe operation of the distribution network.

参考文献/References:

[1] 肖湘宁, 韩民晓, 徐永海, 等. 电能质量分析与控制[M]. 北京: 中国电力出版社, 2010: 1-6.
[2] 胡楠, 李亮, 冉冉, 等. 数据挖掘在电能质量监测数据分析中的应用[J]. 科技风, 2018(23): 101
[3] 李树卿, 陈鼎, 仇群辉, 等. 基于随机森林的电能质量综合评估[J]. 现代电力, 2019, 36(2): 81–87
[4] 丁泽俊, 刘平, 欧阳森, 等. 电能质量预测与预警机制及其应用[J]. 电力系统及其自动化学报, 2015, 27(10): 87–92
[5] 王芳, 顾伟, 袁晓冬, 等. 面向智能电网的新一代电能质量管理平台[J]. 电力自动化设备, 2012, 32(7): 134–139
[6] 柏晶晶, 袁晓冬, 张帅, 等. 基于组合赋值法的稳态电能质量预警阈值研究[J]. 电测与仪表, 2014, 51(12): 70–74
[7] 王同勋, 杨岑玉, 彭傊, 等. 一种电能质量预警系统及其方法[P]. 中国: 103647276A, 2014-03-19.
[8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12325-2008, 电能质量供电电压偏差[S]. 北京: 中国标准出版社, 2009.
[9] 国家技术监督局. GB/T 14549-1993, 电能质量公用电网谐波[S]. 北京: 中国标准出版社, 1994.
[10] 赵秀平. 基于多种预测方法的电能质量预警机制研究与实现[D]. 北京: 华北电力大学(北京), 2015.
[11] 苏卫卫. 基于数据挖掘技术的稳态电能质量数据预测预警研究[D]. 北京: 华北电力大学, 2014.
[12] 钟清, 张文峰, 余南华, 等. 主动配电网谐波预测预警方法的研究[J]. 电力系统保护与控制, 2014, 42(23): 50–56
[13] 黄磊, 陈浩, 衣乔木, 等. 基于k-means聚类和BP神经网络组合模型的用电负荷预测[J]. 电力与能源, 2016, 37(1): 56–60
[14] 欧阳森, 李奇, 石怡理, 等. 考虑模糊聚类特性的电能质量预警方法及其应用[J]. 电网技术, 2014, 38(6): 1712–1716
[15] 徐邦恩, 蔺红. 基于改进模糊聚类的典型日负荷曲线选取方法[J]. 电测与仪表, 2019, 56(4): 21–26

相似文献/References:

[1]李薇,张文,郑妍.基于改进的小波阈值的电能质量信号去噪[J].应用科技,2012,39(02):15.[doi:10.3969/j.issn.1009-671X. 201111021]
 LI Wei,ZHANG Wen,ZHENG Yan.Power quality signal denoising based on improved wavelet threshold[J].Applied science and technology,2012,39(2):15.[doi:10.3969/j.issn.1009-671X. 201111021]
[2]朱涛,顾全,赵川,等.含分布式电源的弱环配电网状态估计[J].应用科技,2015,42(04):25.[doi:10.3969/j.issn.1009-671X.201411009]
 ZHU Tao,GU Quan,ZHAO Chuan,et al.State estimation for the weakly meshed distribution network with the distributed power[J].Applied science and technology,2015,42(2):25.[doi:10.3969/j.issn.1009-671X.201411009]
[3]赵悦,顾军,傅强,等.分布式新能源多功能并网逆变器新型控制策略[J].应用科技,2018,45(01):14.[doi:10.11991/yykj.201704016]
 ZHAO Yue,GU Jun,FU Qiang,et al.New control strategy for distributed new-energy multi-functional grid-connected inverters[J].Applied science and technology,2018,45(2):14.[doi:10.11991/yykj.201704016]
[4]吕峰,蔡超,丁建忠,等.基于权重动态调整的树型配电网单相接地故障行波测距方法[J].应用科技,2020,47(2):53.[doi:10.11991/yykj.201907009]
 LYU Feng,CAI Chao,DING Jianzhong,et al.Traveling wave fault location method for single-phase grounding fault in tree-type distribution network based on dynamic weight adjustment[J].Applied science and technology,2020,47(2):53.[doi:10.11991/yykj.201907009]

备注/Memo

备注/Memo:
收稿日期:2019-05-29。
基金项目:国网山东省电力公司科技项目(2018A-044)
作者简介:李延真,男,高级工程师
通讯作者:李延真,E-mail:1477758543@qq.com
更新日期/Last Update: 2020-04-21