[1]陈薇,刘飒,门昌华,等.流量波动对临界热流密度影响研究[J].应用科技,2020,47(3):106-110.[doi:10.11991/yykj.201909002]
 CHEN Wei,LIU Sa,MEN Changhua,et al.An experimental study of the flow fluctuation impact on critical heat flux[J].Applied science and technology,2020,47(3):106-110.[doi:10.11991/yykj.201909002]
点击复制

流量波动对临界热流密度影响研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年3期
页码:
106-110
栏目:
核科学技术与应用
出版日期:
2020-07-05

文章信息/Info

Title:
An experimental study of the flow fluctuation impact on critical heat flux
作者:
陈薇12 刘飒12 门昌华1 孙灿辉2
1. 中国核电发展中心,北京 100045;
2. 国家电投集团科学技术研究院有限公司,北京 100220
Author(s):
CHEN Wei12 LIU Sa12 MEN Changhua1 SUN Canhui2
1. China Nuclear Development Center, Beijing 100045, China;
2. State Power Investment Corporation Research Institute, Beijing 100220, China
关键词:
流量波动临界热流密度堆内熔融物滞留压力容器外部冷却严重事故缓解措施加热面向下
Keywords:
flow fluctuationcritical heat fluxin-vessel retentionreactor pressure vesselexternal coolingsevere accidentmitigative measuresdownward heated surface
分类号:
TL33
DOI:
10.11991/yykj.201909002
文献标志码:
A
摘要:
为研究压力容器外部冷却(IVR-ERVC)条件下流动不稳定性对临界热流密度的影响,建立机理性试验平台,开展了加热表面向下倾斜矩形通道内流量波动对临界热流密度影响试验。通过对比有、无波动条件下的临界热流密度试验数据,归纳总结出流量波动周期、振幅对临界热流密度的影响,得到的试验及分析结果可为IVR-ERVC严重事故缓解措施有效性评价提供支持。
Abstract:
In order to study the flow instability impact on critical heat flux under the in-vessel retention through external reactor vessel cooling (IVR-ERVC) condition, the mechanism experiment facilities were built to conduct critical heat flux(CHF) experiment in a rectangular downward heated flow channel under flow fluctuation condition. By comparing the experiment data of clinical heat flux with and without flow fluctuation, the impact of key factors including the fluctuation period and amplitude of flux on critical heat flux was analyzed. The experimental and analytical results contribute to a better evaluation on the effectiveness of the measures taken for the the severe accident link of the in-vessel retention analysis.

参考文献/References:

[1] KYMALAINEN O, TUOMISTO H, THEOFANOUS T G. In-vessel retention of corium at the loviisa plant[J]. Nuclear engineering and design, 1997, 169: 109-130.
[2] ANGELINI S, TU J P, BUYEVICH Y A, et al. The mechanism and prediction of critical heat flux in inverted gemoetries[J]. Nuclear engineer and design, 2000, 200: 83-94.
[3] 曹克美. C2核电厂压力容器外水冷堆内熔融物有效性分析及研究[D]. 上海: 上海核工程研究设计院, 2007.
[4] THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear engineering and design, 1997, 169(1/2/3): 1-48.
[5] REMPE J L, KNUDSON D L, ALLISON C M, et al. Potential for AP600 in-vessel retention through Ex-Vessel flooding[R]. Idaho: Idaho National Engineering and Environmental Laboratory, 1997.
[6] CHEUNG F B, HADDAD K H, LIU Y C. Critical Heat Flux (CHF) phenomenon on a downward facing curved surface[R]. Washington, DC: Nuclear Regulatory Commission, 1997.
[7] SUN Canhui, CHEN Wei, GENG Jun. Experimental study on critical heat flux of in-vessel retention for large nuclear reactor[C]//Proceeding of the 25th International Conference on Nuclear Engineering. Shanghai, China, 2017.
[8] CHEN Wei, SUN Canhui, GENG Jun. Enhancement of RPV critical heat flux by injection flow[C]//Proceeding of the 25th International Conference on Nuclear Engineering. Shanghai, China, 2017.
[9] PARK R J, HA K S, KIM S B, et al. Two-phase natural circulation flow of air and water in a reactor cavity model under an external vessel cooling during a severe accident[J]. Nuclear engineering and design, 2006, 236(23): 2424-2430.
[10] HA K S, PARK R J, KIM H Y, et al. A study of the two-phase natural circulation flow through the annular gap between a reactor vessel and insulation system[J]. International communications in heat and mass transfer, 2004, 31(1): 43-52.
[11] 王亮亮, 王凡, 徐辉, 等. ERVC流道内伴随闪蒸的流动不稳定性[C]//第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集. 北京, 2015.
[12] LI Fei, JIN Di, LIU Xiaojing, et al. Analysis of flow stability boundaries of ERVC system[C]//Proceeding of the 21st International Conference on Nuclear Engineering. Chengdu, China, 2013.

相似文献/References:

[1]王洪亮,夏虹,张会勇,等.纳米流体对临界热流密度强化影响池沸腾实验研究[J].应用科技,2017,44(01):82.[doi:10.11991/yykj.201512009]
 WANG Hongliang,XIA Hong,ZHANG Huiyong,et al.Investigation of critical heat flux enhancement pool boiling experiment by using nanofluids[J].Applied science and technology,2017,44(3):82.[doi:10.11991/yykj.201512009]

备注/Memo

备注/Memo:
收稿日期:2019-09-04。
作者简介:陈薇,女,高级工程师,博士
通讯作者:陈薇,E-mail:03chenwei323@163.com
更新日期/Last Update: 2020-08-05