[1]张忠民,刘刚,刘鲁涛.基于分数阶傅里叶变换和循环谱的雷达信号调制方式识别[J].应用科技,2020,47(3):30-36.[doi:10.11991/yykj.201909013]
 ZHANG Zhongmin,LIU Gang,LIU Lutao.Radar signal modulation recognition based on fractional Fourier transform and cyclic spectrum[J].Applied science and technology,2020,47(3):30-36.[doi:10.11991/yykj.201909013]
点击复制

基于分数阶傅里叶变换和循环谱的雷达信号调制方式识别(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年3期
页码:
30-36
栏目:
现代电子技术
出版日期:
2020-07-05

文章信息/Info

Title:
Radar signal modulation recognition based on fractional Fourier transform and cyclic spectrum
作者:
张忠民 刘刚 刘鲁涛
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
ZHANG Zhongmin LIU Gang LIU Lutao
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
分数阶傅里叶变换频谱复杂度谱峰特征循环谱特征自相关功率谱特征信噪比总体识别率
Keywords:
fractional Fourier transformspectrum complexityspectrum peak featurecyclic spectrum characteristicsautocorrelationpower spectrum characteristicssignal-to-noise ratiooverall recognition rate
分类号:
TN971.1
DOI:
10.11991/yykj.201909013
文献标志码:
A
摘要:
针对低信噪比条件下雷达信号脉内调制方式识别算法识别率低的问题,提出了一种基于分数阶傅里叶变换(FRFT)和循环谱的雷达信号识别方法。通过分数阶傅里叶变换搜索出最大峰值对应的分数阶,把信号粗分为非调频信号和调频信号2大类。对于非调频信号,利用信号的谱峰特征和频谱复杂度以及循环谱特征,对二频编码信号、常规雷达信号、二相编码信号和四相编码信号进行分类识别;对于调频信号,利用自相关得到功率谱特征实现线性调频信号与非线性调频信号的细分类。经实验验证,本文提出的方法在信噪比大于2 dB时,总体识别率达到90%以上。
Abstract:
To solve the problem of low recognition rate of radar signal pulse modulation method under the low signal-to-noise ratio condition, a method of radar signal recognition based on fractional Fourier (FRFT) and cyclic spectrum is proposed. Firstly, the fractional order corresponding to the maximum peak value is searched by fractional Fourier transform, and the signals are roughly divided into two categories: FM signals and non-FM signals. For non-FM signals, the classification of binary frequency code signals, normal radar signals, binary phase code signals and quadrature phase code signals is realized by utilizing the spectral peak characteristics, spectral complexity and cyclic spectrum characteristics of the signals. For FM signals, the power spectrum features are correlated to realize the subdivision of LFM signals and NFM signals. The simulation results show that the overall recognition probability of this method is more than 90% when the signal-to-noise ratio is greater than 2 dB.

参考文献/References:

[1] 王星, 周一鹏, 周东青, 等. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972-2976
[2] 呙鹏程, 王星, 田元荣. 基于CEEMDAN-ASVM的低截获概率雷达信号识别[J]. 现代雷达, 2018, 40(3): 27-32
[3] LIU Yongjian, XIAO Peng, WU Hongchao, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of systems engineering and electronics, 2015, 26(5): 973-981.
[4] NANDI A K, AZZOUZ E E. Algorithms for automatic modulation recognition of communication signals[J]. IEEE transactions on communications, 1998, 46(4): 431-436.
[5] NANDI A K, AZZOUZ E E. Automatic analogue modulation recognition[J]. Signal processing, 1995, 46(2): 211-222.
[6] BARBAROSSA S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE transactions on signal processing, 1995, 43(6): 1511-1515.
[7] BARBAROSSA S, LEMOINE O. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation[J]. IEEE signal processing letters, 1996, 3(4): 112-115.
[8] LUNDEN J, KOIVUNEN V. Automatic radar waveform recognition[J]. IEEE journal of selected topics in signal processing, 2007, 1(1): 124-136.
[9] ZHANG Ming, LIU Lutao, DIAO Ming, et al. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16(10): 1682.
[10] 戴亮军. 基于频谱和瞬时频率特征的雷达信号识别[J]. 哈尔滨商业大学学报(自然科学版), 2018, 34(5): 568-572, 587
[11] 刘鲁涛, 戴亮军, 陈涛. 基于频谱复杂度的雷达信号调制方式识别[J]. 哈尔滨工程大学学报, 2018, 39(6): 1081-1086
[12] OZAKTAS H M, ARIKAN O, KUTAY M A. Digital computation of the fractional Fourier transform[J]. IEEE transactions on signal processing, 1996, 44(9): 2141-2150.
[13] KWOK H K, JONES D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE transactions on signal processing, 2000, 48(10): 2964-2972.
[14] 段皓楠. 基于分数阶傅里叶变换的线性调频信号估计与分离研究[D]. 南京: 南京理工大学, 2017.
[15] 王彦欢. 基于FRFT的信号识别与参数估计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[16] XIA Jie, ZHANG Jianyun, LI Xiaobo, et al. Weak signal detection based on FRFT-domain adaptive filtering algorithm[C]//Proceedings of 2016 CIE International Conference on Radar. Guangzhou, China: IEEE, 2016.
[17] LEMPEL A, ZIV J. On the complexity of finite sequences[J]. IEEE transactions on information theory, 1976, 22(1): 75-81.
[18] 熊达福. 基于信道化的LPI雷达侦察技术研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[19] 戴亮军. 雷达信号脉内调制特征识别的研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018.

相似文献/References:

[1]安澄全,李云娜.分数阶域噪声预测判决反馈均衡方法的研究[J].应用科技,2014,41(01):30.[doi:10.3969/j.issn.1009-671X.201212002]
 AN Chengquan,LI Yunna.Prediction decision feedback equalization method based on a fractional order domain noise[J].Applied science and technology,2014,41(3):30.[doi:10.3969/j.issn.1009-671X.201212002]

备注/Memo

备注/Memo:
收稿日期:2019-09-19。
基金项目:国家自然科学基金项目(61571149)
作者简介:张忠民,男,副教授;刘刚,男,硕士研究生
通讯作者:刘刚,E-mail:liugang1401519261@hrbeu.edu.cn
更新日期/Last Update: 2020-08-05