[1]蔡报炜,韩方林.波浪管内二次流动数值分析[J].应用科技,2020,47(3):1-5.[doi:10.11991/yykj.201910001]
 CAI Baowei,HAN Fanglin.A numerical study on the secondary flow in a wavy tube[J].Applied science and technology,2020,47(3):1-5.[doi:10.11991/yykj.201910001]
点击复制

波浪管内二次流动数值分析(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年3期
页码:
1-5
栏目:
船舶与海洋工程
出版日期:
2020-07-05

文章信息/Info

Title:
A numerical study on the secondary flow in a wavy tube
作者:
蔡报炜 韩方林
中国船舶及海洋工程设计研究院,上海 200011
Author(s):
CAI Baowei HAN Fanglin
Marine Design and Research Institute of China, Shanghai 200011, China
关键词:
强化传热波浪管二次流数值模拟换热特性阻力特性综合换热性能结构涡流动涡
Keywords:
heat transfer enhancementwavy tubesecondary flownumerical simulationheat transfer characterflow resistance charactercomprehensive exchanging characterstructure vortexturbulence vortex
分类号:
TL33
DOI:
10.11991/yykj.201910001
文献标志码:
A
摘要:
为获得波浪管内更精确的流场分布以进一步明确其强化换热的机理,本文采用湍流模型和壁面处理方法对波浪管换热器进行了数值模拟。通过对不同工况下波浪管内流场的计算,分析了波浪管内二次流的形成机理、发展过程以及其对波浪管换热器换热特性和阻力特性的影响。结果表明:波浪管内不存在严格意义上的层流,在极低雷诺数下也会形成二次流;波浪管内的二次流动会产生2种对阻力特性和换热特性贡献不同的涡,这2种涡的大小和分布会随湍流化程度的升高而改变,从而导致波浪管的强化换热能力和相对阻力也随之发生变化。
Abstract:
In order to explore the flow field distribution in the wavy tube more credible to carry out the mechanization of its heat transfer enhancement, wavy tube exchangers are numerically simulated by the turbulence model and wall treatment method verified by experiments. By calculating the flow field inside the wavy tube under different working conditions, the formation mechanism, development of the secondary flow in the wavy tube and its influence on the heat transfer and resistance of wavy tube exchangers are illuminated. It indicates that, there is no strictly laminar flow in wavy tube, the secondary flow appears even in extremely low Re. The secondary flow produces two kinds of vortexes, which make different contributions to heat transfer and flow resistance, and the size and distribution of these two kinds of vortexes change with the elevation of turbulence, resulting in change of heat transfer enhancement and relative resistance of the wavy tube correspondingly.

参考文献/References:

[1] ABED W M, WHALLEY R D, DENNIS D J C, et al. Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel[J]. International journal of heat and mass transfer, 2015, 88: 790-802.
[2] 李建华, 孙中宁, 吴国辉. 螺旋折流板波槽管换热器换热与阻力实验研究[J]. 应用科技, 2006, 33(8): 70-72
[3] 俞胜之, 阎昌琪, 王建军, 等. 摇摆对单相自然循环系统流动特性的影响分析[J]. 哈尔滨工程大学学报, 2017, 38(7): 1065-1071
[4] HAN D H, LEE K J. Single-phase heat transfer and flow characteristics of micro-fin tubes[J]. Applied thermal engineering, 2005, 25(11): 1657-1669.
[5] 吴国辉, 黄渭堂, 孙中宁. 断续螺旋折流板在管壳式换热器中的应用[J]. 应用科技, 2005, 32(4): 45-47
[6] BHUTTA M M A, HAYAT N, BASHIR M H, et al. CFD applications in various heat exchangers design[J]. Applied thermal engineering, 2012, 32(1): 1-12.
[7] YANG Ru, CHIANG F P. An experimental heat transfer study for periodically varying-curvature curved-pipe[J]. International journal of heat and mass transfer, 2002, 45(15): 3199-3204.
[8] 朱升, 孙中宁, 范广铭. 微波浪管传热与阻力特性实验研究[J]. 原子能科学技术, 2011, 45(12): 1444-1448
[9] YANG R, CHANG S F, WU W. Flow and heat transfer in a curved pipe with periodically varying curvature[J]. International communications in heat and mass transfer, 2000, 27(1): 133-143.
[10] ROSAGUTI N R, FLETCHER D F, HAYNES B S. Low-Reynolds number heat transfer enhancement in sinusoidal channels[J]. Chemical engineering science, 2007, 62(3): 694-702.
[11] 帅科, 王彤, 谷传纲. 波浪管内部流动的三维数值模拟[J]. 风机技术, 2006(2): 10-14
[12] 朱升, 孙中宁, 范广铭. 低流速时波浪管内流动与传热特性数值分析[J]. 核动力工程, 2011, 32(6): 51-55
[13] VERSTEEG H K, MALALASEKERA W. An Introduction to Computational Fluid Dynamics[M]. New York: Longman, 1995.
[14] Fluent Inc. FLUENT User’s Guide[M]. Lebanon: Fluent Inc., 2003.
[15] 康顺, 石磊, 戴丽萍, 等. CFD模拟的误差分析及网格收敛性研究[J]. 工程热物理学报, 2010, 31(12): 2009-2013

备注/Memo

备注/Memo:
收稿日期:2019-10-13。
作者简介:蔡报炜, 男, 工程师
通讯作者:蔡报炜,E-mail:tsibower@126.com
更新日期/Last Update: 2020-08-05