[1]沈相相,赵健博.基于子空间拟合的块稀疏贝叶斯学习DOA估计[J].应用科技,2020,47(4):42-46.[doi:10.11991/yykj.201911007]
 SHEN Xiangxiang,ZHAO Jianbo.Block sparse bayesian learning DOA estimation based on subspace fitting[J].Applied science and technology,2020,47(4):42-46.[doi:10.11991/yykj.201911007]
点击复制

基于子空间拟合的块稀疏贝叶斯学习DOA估计(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年4期
页码:
42-46
栏目:
现代电子技术
出版日期:
2020-07-05

文章信息/Info

Title:
Block sparse bayesian learning DOA estimation based on subspace fitting
作者:
沈相相 赵健博
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
SHEN Xiangxiang ZHAO Jianbo
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
DOA估计稀疏贝叶斯学习子空间拟合稀疏表示时间相关相关向量机网格失配多项式求根
Keywords:
DOA estimationsparse bayesian learningsubspace fittingsparse representationtemporal correlationcorrelation vector machinegrid mismatchpolynomial root
分类号:
TN911.7
DOI:
10.11991/yykj.201911007
文献标志码:
A
摘要:
针对传统基于稀疏贝叶斯学习(sparse bayesian learning, SBL)的波达方向(direction of arrival,DOA)估计算法在低信噪比条件下性能不足的问题,提出了一种基于子空间拟合和块稀疏贝叶斯学习的离网DOA估计方法。首先对样本的协方差矩阵进行特征分解,获得信号的加权子空间,然后构造等价信号的稀疏表示模型并利用块稀疏贝叶斯算法进行参数求解,同时对于网格失配带来的建模误差,将空间域内的离散采样网格点作为动态参数,通过求解一个多项式,利用期望最大化算法迭代更新离散网格点的位置。仿真实验结果表明,相对于传统SBL算法,该方法具有更好的估计精度和空间分辨率。
Abstract:
To improve the performance of traditional direction of arrival estimation algorithm based on sparse bayesian learning under the condition of low SNR, we propose a new off-grid DOA estimation method based on subspace fitting and block sparse Bayesian learning. Firstly, the weighted subspace of the signal is obtained by eigenvalue decomposition of the sample covariance matrix, then the sparse representation model of the equivalent signal is constructed and the parameters are solved by the block sparse Bayesian algorithm. And at the same time, for the modeling error caused by the grid mismatch, the discrete sampling grid points in the spatial domain are treated as dynamic parameters, and by solving a polynomial, the position of discrete grid points is updated iteratively using an expectation maximization algorithm. The simulation results indicate that the proposed method provides better DOA estimation accuracy and spatial resolution than the traditional SBL algorithm.

参考文献/References:

[1] KRIM H, VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE signal processing magazine, 1996, 13(4): 67-94
[2] WANG Qianli, ZHAO Zhiqin, CHEN Zhuming, et al. Grid evolution method for DOA estimation[J]. IEEE transactions on signal processing, 2018: 2374–2383.
[3] SCHMIDT R O. Multiple emitter location and signal parameters estimation[J]. IEEE transactions on antennas and propagation, 1986, 34(3): 276–280.
[4] ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE transactions on acoustics speech and signal processing, 1989, 37(7): 984–995.
[5] PAL P, WAIDYANATHAN P P.Coprime sampling and the music algorithm [C]//Digital Signal Process Workshop and IEEE Signal Processing Education Workshop. Sedona, Arizona, USA, 2011: 289–294.
[6] HU Nan, YE Zhongfu, XU Dongyang, et al. A sparse recovery algorithm for DOA estimation using weighted subspace fitting[J]. Signal processing, 2012, 92(10): 2566–2570.
[7] 孙磊, 王华力, 熊林林, 等. 基于贝叶斯压缩感知的子空间拟合DOA估计方法[J]. 信号处理, 2012, 28(6): 827–833
[8] GERSTOFT P, MECKLENBRAUKER C F, XENAKI A, et al. Multisnapshot sparse bayesian learning for DOA[J]. IEEE signal processing letters, 2016, 23(10): 1469–1473.
[9] MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE transactions on signal processing, 2005, 53(8): 3010–3022.
[10] DAS, ANUP. Theoretical and experimental comparison of off-grid sparse bayesian direction-of-arrival estimation algorithms[J]. IEEE access, 2017:1.
[11] TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of machine learning research, 2001, 1(3): 211–244.
[12] CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of-arrival estimation through bayesian compressive sensing strategies[J]. IEEE transactions on antennas and propagation, 2013, 61(7): 3828–3838.
[13] YANG J, YANG Y, LIAO G, et al. A super-resolution direction of arrival estimation algorithm for coprime array via sparse Bayesian learning inference[J]. Circuits system and signal process, 2018, 37(5): 1907–1934.
[14] YANG J, YANG Y, LU J. A variational Bayesian strategy for solving the DOA estimation problem in sparse array[J]. Digital signal processing, 2019, 90: 28–35.
[15] WANG H, WANG X, WAN L, et al. Robust sparse Bayesian learning for off-grid DOA estimation with non-uniform noise[J]. IEEE access, 2018(6): 64688–64697.
[16] YANG Zai, XIE Lihua, ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE transactions on signal processing, 2011, 61(1): 38–43.
[17] ZHANG Yi, YE Zhongfu, XU Xu, et al. Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning[J]. Signal processing, 2014, 98: 197–201.
[18] WU Xiaohua, ZHU Weiping, YAN Jun. Direction of arrival estimation for off-grid signals based on sparse bayesian learning[J]. IEEE sensors journal, 2016, 16(7): 2004–2016.
[19] DAI J, BAO X, XU W, et al. Root sparse bayesian learning for off-grid DOA estimation[J]. IEEE signal processing letters, 2017, 24(1): 46–50.
[20] ZHANG Z, RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning[J]. IEEE journal of selected topics in signal processing, 2011, 5(5): 912–926.

相似文献/References:

[1]刁鸣,袁熹,高洪元,等.一种运动目标的相干信号源DOA跟踪方法[J].应用科技,2008,35(11):26.
 DIAO Ming,YUAN Xi,GAO Hong-yuan,et al.An approach of estimating DOA for coherent signals from moving sources[J].Applied science and technology,2008,35(4):26.
[2]韩晓东,刁鸣.冲激噪声背景下基于虚拟阵列变换的DOA估计[J].应用科技,2010,37(01):8.[doi:10.3969/j.issn.1009-671X.2010.01.003]
 HAN Xiao-dong,DIAO Ming.DOA estimation based on virtual array transformation in an impulsive noise environment[J].Applied science and technology,2010,37(4):8.[doi:10.3969/j.issn.1009-671X.2010.01.003]
[3]安春莲,刁鸣,高洪元.基于量子遗传算法的子空间拟合测向[J].应用科技,2010,37(03):49.[doi:10.3969/j.issn.1009-671X.2010.03.013]
 AN Chun-lian,DIAO Ming,GAO Hong-yuan.DOA estimation using subspace fitting based on quantum genetic algorithm[J].Applied science and technology,2010,37(4):49.[doi:10.3969/j.issn.1009-671X.2010.03.013]
[4]韩晓东,刁鸣.冲击噪声背景下均匀圆阵相干信源的DOA估计[J].应用科技,2012,39(01):35.[doi:10.3969/j.issn.1009-671X. 201110008]
 HAN Xiaodong,DIAO Ming.DOA estimation of uniform circular array and coherent sources in an impulsive noise environment[J].Applied science and technology,2012,39(4):35.[doi:10.3969/j.issn.1009-671X. 201110008]
[5]曾富红,曲志昱,司伟建.极化敏感阵列的DOA及极化参数降维估计算法[J].应用科技,2017,44(03):39.[doi:10.11991/yykj.201605016]
 ZENG Fuhong,QU Zhiyu,SI Weijian.Dimension-reduction for DOA and polarization estimation based on polarization sensitive array[J].Applied science and technology,2017,44(4):39.[doi:10.11991/yykj.201605016]
[6]郜丽鹏,杜旭华.基于变分稀疏贝叶斯学习的DOA估计[J].应用科技,2018,45(06):32.[doi:10.11991/yykj.201712017]
 GAO Lipeng,DU Xuhua.Direction-of-arrival (DOA) estimation based on variational sparse Bayesian learning[J].Applied science and technology,2018,45(4):32.[doi:10.11991/yykj.201712017]
[7]刁弘扬,胡洲勇,禹永植.一种改进广义正交匹配追踪的DOA估计方法[J].应用科技,2020,47(4):54.[doi:10.11991/yykj.201910006]
 DIAO Hongyang,HU Zhouyong,YU Yongzhi.An improved generalized orthogonal matching pursuit method used in the direction of arrival estimation[J].Applied science and technology,2020,47(4):54.[doi:10.11991/yykj.201910006]

备注/Memo

备注/Memo:
收稿日期:2019-11-06。
基金项目:国家自然科学基金项目(61571149)
作者简介:沈相相,男,硕士研究生
通讯作者:沈相相,E-mail:422183701@qq.com
更新日期/Last Update: 2020-11-27