参考文献/References:
[1] 王合龙, 边栓成. 一种增强细节的红外图像处理算法[J]. 太赫兹科学与电子信息学报, 2018, 16(1): 139–142
[2] 王岳, 李双喜, 王磊. 红外图像超分辨率重建技术研究[J]. 激光与红外, 2018, 48(4): 524–530
[3] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8): 1202–1213
[4] 李浪宇, 苏卓, 石晓红, 等. 图像超分辨率重建中的细节互补卷积模型[J]. 中国图象图形学报, 2018, 23(4): 572–582
[5] TIAN Jing, MA Kaikuang. A survey on super-resolution imaging[J]. Signal, image and video processing, 2011, 5(3): 329–342.
[6] 刘月峰, 杨涵晰, 蔡爽, 等. 基于改进卷积神经网络的单幅图像超分辨率重建方法[J]. 计算机应用, 2019, 39(5): 1440–1447
[7] 廖小华, 陈念年, 蒋勇, 等. 改进的卷积神经网络红外图像超分辨率算法[J]. 红外技术, 2020, 42(1): 75–80
[8] DONG C, LOY C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//ECCV. Zurich, Switzerland,2014: 35-40.
[9] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, 2017:105-114.
[10] HE Kaiming, ZHANG Xiangyu,REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016: 770-778.
[11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. Montreal, Canada, 2014: 2672-2680.
[12] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Computer Vision and Pattern Recognition Workshops. Honolulu, USA, IEEE, 2017: 1132-1140.
[13] SHAHAM T R, DEKEL T, MICHAELI T. SinGAN: Learning a generative model from a single natural image[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea , 2019: 4569-4579.
[14] 凡遵林, 管乃洋, 王之元, 等. 红外图像质量的提升技术综述[J]. 红外技术, 2019, 41(10): 941–946
[15] 张川. 面向图像分类的深度残差网络优化结构研究[D]. 北京:中国科学院大学,2016.
[16] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on International Conference on Machine Learning. Lille, French, 2015: 448-456.
[17] 麻旋, 戴曙光. 基于残差网络的图像超分辨率算法改进研究[J]. 软件导刊, 2018, 17(4): 95–97
[18] TIMOFTE R, ROTHE R, VAN GOOL L. Seven ways to improve example-based single image super resolution[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016: 1865-1873.
[19] 王贺, 李野, 付明艳. 一种基于图像分层的红外图像目标细节增强算法[J]. 计算机科学与应用, 2020, 10(5): 6
[20] BOOR C D. Bicubic spline interpolation[J]. Journal of mathematics and physics, 1962, 41(1/2/3/4):212-218.
相似文献/References:
[1]王琦,苏畅,姜弢.“巨”型负磁导率材料的优化设计[J].应用科技,2011,38(04):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
WANG Qi,SU Chang,JIANG Tao.Optimal design of negative permeability material with “巨”[J].Applied science and technology,2011,38(4):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
[2]刘少刚,吕建伟,王士成.基于数据融合与神经网络的火灾探测研究[J].应用科技,2011,38(05):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
LIU Shaogang,LV Jianwei,WANG Shicheng.A primitive study of fire detection method based on data fusion and BP neural network[J].Applied science and technology,2011,38(4):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
[3]张文辉,胡小平,朱银发.自由漂浮空间机械臂基于神经网络的H∞鲁棒控制[J].应用科技,2012,39(06):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
ZHANG Wenhui,HU Xiaoping,ZHU Yinfa.Neural network based H∞ robust control of free-floating space robot manipulators[J].Applied science and technology,2012,39(4):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
[4]袁建东,夏国清.神经网络监督控制在船用一体化压水堆功率控制中的应用[J].应用科技,2005,32(01):24.
YUAN Jiandong,XIA Guoqing.Application of neural network supervisory control to power regulating of marine integral pressurized water reactor[J].Applied science and technology,2005,32(4):24.
[5]廖艳苹,谢 红,杨莘元.辅助式小波神经网络的调制识别技术[J].应用科技,2006,33(04):24.
LIAO Yan-ping,XIE Hong,YANG Shen-yuan.Recognition of modulation using assistant wavelet neural network[J].Applied science and technology,2006,33(4):24.
[6]侯艳雪,黄曼磊,陶丽楠,等.神经网络在永磁同步电机变频调速系统中的应用[J].应用科技,2015,42(02):1.[doi:10.3969/j.issn.1009-671X.201405020]
HOU Yanxue,HUANG Manlei,TAO Linan,et al.Application of artificial neural network (ANN) in variable frequency speed control system of PMSM[J].Applied science and technology,2015,42(4):1.[doi:10.3969/j.issn.1009-671X.201405020]
[7]陈立伟,黄璐,齐传斌.基于遗传算法优化的相关向量机的燃机涡轮叶片故障诊断[J].应用科技,2016,43(02):70.[doi:10.11991/yykj.201506026]
CHEN Liwei,HUANG Lu,QI Chuanbin.Fault diagnosis for gas turbine blades based on the relevance vector machine optimized by genetic algorithm[J].Applied science and technology,2016,43(4):70.[doi:10.11991/yykj.201506026]
[8]丁虎,姚磊,刘少刚,等.基于神经网络和图像分割的林火图像识别研究[J].应用科技,2016,43(03):82.[doi:10.11991/yykj.201510011]
DING Hu,YAO Lei,LIU Shaogang,et al.The forest fire image recognition based on neural network and image segmentation[J].Applied science and technology,2016,43(4):82.[doi:10.11991/yykj.201510011]
[9]朱少民,夏虹,杨波,等.蒸发器水位控制系统在线故障诊断方法[J].应用科技,2016,43(05):75.[doi:10.11991/yykj.201512017]
ZHU Shaomin,XIA Hong,YANG Bo,et al.On-line fault diagnosis method of steam generator water level control system[J].Applied science and technology,2016,43(4):75.[doi:10.11991/yykj.201512017]
[10]张秋云,张营,李臣.遗传算法优化BP神经网络在中医按摩机器人中的应用[J].应用科技,2017,44(02):73.[doi:10.11991/yykj.201603018]
ZHANG Qiuyun,ZHANG Ying,LI Chen.Application of BP neural network based on genetic algorithm optimization in Chinese medicine massage robot[J].Applied science and technology,2017,44(4):73.[doi:10.11991/yykj.201603018]
[11]卢用煌,黄山.深度学习在身份证号码识别中的应用[J].应用科技,2019,46(01):123.[doi:10.11991/yykj.201804008]
LU Yonghuang,HUANG Shan.Application of deep learning in identification of ID card number[J].Applied science and technology,2019,46(4):123.[doi:10.11991/yykj.201804008]
[12]李茜萌,陈春雨,何恒翔.弹性部署的分布式AI计算架构系统研究[J].应用科技,2020,47(5):64.[doi:10.11991/yykj.202006001]
LI Ximeng,CHEN Chunyu,HE Hengxiang.Research on distributed AI computing architecture system with flexible deployment[J].Applied science and technology,2020,47(4):64.[doi:10.11991/yykj.202006001]