[1]孙华泽,张晓林.基于瞬时相位新特征的数字调制信号识别[J].应用科技,2020,47(6):30-35,52.[doi:10.11991/yykj.202001001]
 SUN Huaze,ZHANG Xiaolin.Digital modulation signal recognition based onnew features of instantaneous phase[J].Applied science and technology,2020,47(6):30-35,52.[doi:10.11991/yykj.202001001]
点击复制

基于瞬时相位新特征的数字调制信号识别(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年6期
页码:
30-35,52
栏目:
现代电子技术
出版日期:
2021-01-31

文章信息/Info

Title:
Digital modulation signal recognition based onnew features of instantaneous phase
作者:
孙华泽 张晓林
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
SUN Huaze ZHANG Xiaolin
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
调制识别信号处理瞬时特征瞬时相位决策树采样率信噪比识别率
Keywords:
modulation recognitionsignal processinginstantaneous characteristicsinstantaneous phasedecision treesample ratesignal-to-noise ratiorecognition rate
分类号:
TN971
DOI:
10.11991/yykj.202001001
文献标志码:
A
摘要:
针对四相移相键控(4PSK)和八相移相键控(8PSK)难以从瞬时特征区分这一问题,本文提出了一种基于瞬时相位的特征——分段相位均值最大值。设计了一种基于瞬时特征的调制识别方案,完成了多进制数字振幅调制(MASK)(M=2、4、8),多进制数字相位调制(MPSK)(M=2、4、8)共6种数字信号的调制识别。通过对信号的非线性相位进行分段,对每一段求均值,并找出均值序列中的最大值等操作,提取了新的特征参数,完成了4PSK与8PSK的区分。理论分析与仿真结果相一致。仿真结果表明,在信噪比高于4 dB时,4PSK与8PSK调制方式的正确识别概率可以达到90%以上。
Abstract:
In view of the difficulty of distinguishing 4 phase shift keying(4PSK) and 8 phase shift keying(8PSK) from instantaneous phase, a new characteristic based on the instantaneous phase is proposed, namely the maximum value of segmented phase mean. A modulation recognition scheme based on instantaneous features is designed to complete the modulation recognition of six kinds of digital modulation of multiple amplitude shift keying(MASK) (M=2, 4, 8) and multiple phase shift keying(MPSK) (M=2, 4, 8). By segmenting the nonlinear phase, calculating the mean value of each segment, and finding the maximum value in the sequence, the new characteristic parameter is extracted, and 4PSK and 8PSK are distinguished. The theoretical analysis is consistent with the simulation results. The simulation results show that the correct recognition probability of 4PSK and 8PSK can reach more than 90% when the signal-to-noise ratio is higher than 4 dB.

参考文献/References:

[1] 李蒙蒙. 基于LabVIEW的数字信号调制识别[D]. 北京邮电大学, 2018: 1-5.
[2] 吴效威. 基于邻域粗集神经网络的通信信号调制识别研究[D]. 太原理工大学, 2011: 1-3.
[3] GHODESWAR S, POONACHA P G. An SNR estimation based adaptive hierarchical modulation classification method to recognize M-ary QAM and M-ary PSK signals[C]//Proceedings of the 2015 3rd International Conference on Signal Processing. Chennai, India, 2015.
[4] 杜盼盼. 基于高阶累积量与循环谱分析的数字调制信号识别[D]. 兰州: 兰州理工大学, 2018: 2-6.
[5] HASSANPOUR S, PEZESHK A M, BEHNIA F. A robust algorithm based on wavelet transform for recognition of binary digital modulations[C]//Proceedings of the 2015 38th International Conference on Telecommunications and Signal Processing. Prague, Czech Republic, 2015.
[6] LI Qiang, SHEN Dong, WANG Fei. MQAM modulation recognition based on AP clustering method[J]. MATEC web of conferences, 2016, 44: 01002.
[7] LAU K, SALIBIAN-BARRERA M, LAMPE L. Modulation recognition in the 868 MHz band using classification trees and random forests[J]. AEU - international journal of electronics and communications, 2016, 70(9): 1321-1328.
[8] HASSANPOUR S, PEZESHK A M, BEHNIA F. Automatic digital modulation recognition based on novel features and support vector machine[C]//Proceedings of the 2016 12th International Conference on Signal-image Technology & Internet-based Systems. Naples, Italy, 2016.
[9] KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]//Proceedings of 2017 IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway, USA, 2017.
[10] CHIKHA W B, CHAOUI S, ATTIA R, et al. Performance of AdaBoost classifier in recognition of superposed modulations for MIMO TWRC with physical-layer network coding[C]//Proceedings of the 2017 25th International Conference on Software, Telecommunications and Computer Networks. Split, Croatia, 2017: 1-5.
[11] YAN Xiao, FENG Guoyu, WU H C, et al. Innovative robust modulation classification using graph-based cyclic-spectrum analysis[J]. IEEE communications letters, 2017, 21(1): 16-19.
[12] YAN Xiao, LIU Guannan, WU H C, et al. New automatic modulation classifier using cyclic-spectrum graphs with optimal training features[J]. IEEE communications letters, 2018, 22(6): 1204-1207.
[13] ZHANG Zhen, LI Yibing, JIN Shanshan, et al. Modulation signal recognition based on information entropy and ensemble learning[J]. Entropy, 2018, 20(3): 198.
[14] LIM C W, WAKIN M B. Compressive temporal higher order cyclostationary statistics[J]. IEEE transactions on signal processing, 2015, 63(11): 2942-2956.
[15] XIE Lijin, WAN Qun. Cyclic feature-based modulation recognition using compressive sensing[J]. IEEE wireless communications letters, 2017, 6(3): 402-405.
[16] AZZOUZ E E, NANDI A K. Automatic identification of digital modulation types[J]. Signal processing, 1995, 47(1): 55-69.
[17] 戈彤彤. 基于多维度特征的数字通信信号调制识别技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 11-29.
[18] DAHAP B I, LIAO Hongshu. Advanced algorithm for automatic modulation recognition for analogue & digital signals[C]//Proceedings of 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering. Khartoum, Sudan, 2015.

相似文献/References:

[1]申连洋,匡锐.ADCP陆上检测装置的设计与实现[J].应用科技,2009,36(08):39.[doi:10.3969/j.issn.1009-671X.2009.08.011]
 SHEN Lian-yang,KUANG Rui.Design of ADCP landmeasuring device[J].Applied science and technology,2009,36(6):39.[doi:10.3969/j.issn.1009-671X.2009.08.011]
[2]罗文波,杨翠娥.软件无线电中基本调制制式的自动识别[J].应用科技,2005,32(01):21.
 LUO WenboYANG Cuie.Automatic modulation recognition of basic modulation styles in software radio[J].Applied science and technology,2005,32(6):21.
[3]潘玉恒,鲁标,孟克.闭环光纤陀螺数字信号处理的设计方案[J].应用科技,2005,32(02):12.
 PAN Yuheng,LU biao,MENG Ke.Digital signal processing of FOG based on DSP[J].Applied science and technology,2005,32(6):12.
[4]朱秀珍,焦淑红,杨绍霞.被动雷达导引头中信号处理器的设计[J].应用科技,2005,32(09):16.
 ZHU Xiu-zhen,JIAO Shu-hong,YANG Shao-xia.Design of signalprocessor in passive radar seeker[J].Applied science and technology,2005,32(6):16.
[5]安平凹,尹达一.CMV2000高速大面阵信号处理和完整性仿真分析[J].应用科技,2015,42(03):1.[doi:10.3969/j.issn.1009-671X.201411010]
 AN Pingao,YIN Dayi.CMV2000 high-speed large-array signal processing and integrity simulation analysis[J].Applied science and technology,2015,42(6):1.[doi:10.3969/j.issn.1009-671X.201411010]
[6]陈璐,谷晓岚,刘元庆,等.特高压直流电晕电流信号分析与处理软件的设计与实现[J].应用科技,2017,44(02):65.[doi:10.11991/yykj.201606005]
 CHEN Lu,GU Xiaolan,LIU Yuanqing,et al.Design and implementation of the software for the analysis and processing of UHVDC corona current[J].Applied science and technology,2017,44(6):65.[doi:10.11991/yykj.201606005]
[7]杨彦名,郜丽鹏.基于循环谱和距离判别的雷达信号调制类型识别[J].应用科技,2018,45(04):61.[doi:10.11991/yykj.201709009]
 YANG Yanming,GAO Lipeng.Radar signal modulation recognition based on cyclic spectrum and distance discrimination[J].Applied science and technology,2018,45(6):61.[doi:10.11991/yykj.201709009]
[8]郜丽鹏,纪风有.基于联合概率关联的雷达信号分选方法[J].应用科技,2019,46(01):69.[doi:10.11991/yykj.201712016]
 GAO Lipeng,JI Fengyou.Radar signal sorting method based on joint probabilistic association[J].Applied science and technology,2019,46(6):69.[doi:10.11991/yykj.201712016]

备注/Memo

备注/Memo:
收稿日期:2020-01-03。
作者简介:孙华泽,男,硕士研究生;张晓林,男,副教授,博士
通讯作者:张晓林,E-mail:zhangxiaolin@hrbeu.edu.cn
更新日期/Last Update: 2021-02-05