[1]孙旭日,李延真.配电网在风险状态下的重构优化方法[J].应用科技,2020,47(4):100-105.[doi:10.11991/yykj.202001016]
 SUN Xuri,LI Yanzhen.Optimized reconfiguration method of distribution network in risk state[J].Applied science and technology,2020,47(4):100-105.[doi:10.11991/yykj.202001016]
点击复制

配电网在风险状态下的重构优化方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年4期
页码:
100-105
栏目:
机电工程
出版日期:
2020-07-05

文章信息/Info

Title:
Optimized reconfiguration method of distribution network in risk state
作者:
孙旭日 李延真
国网山东省电力公司 青岛供电公司,山东 青岛 266000
Author(s):
SUN Xuri LI Yanzhen
Qingdao Power Supply Company, State Grid Shandong Power Corporation, Qingdao, 266000, China
关键词:
自愈控制配电网重构二进制粒子群算法拓扑调整切负荷网络损耗负荷均衡性最大供电能力
Keywords:
self-healing controldistribution network reconfigurationbinary particle swarm optimizationtopology adjustmentload sheddingnetwork lossload balancemaximum power supply capacity
分类号:
TM761
DOI:
10.11991/yykj.202001016
文献标志码:
A
摘要:
为了达到配电网重构策略多目标优化的目的,采用随机权重的方法来构建目标函数。为了满足配电网在不同运行状态下的不同重构目标,各指标在目标函数中的权重会根据电网的运行状态动态调整。为解决二进制粒子群优化(binary particle swarm optimization,BPSO)算法求解速度慢的问题,提出了改进型BPSO算法。改进型算法可以将处于风险状态的设备快速转移到供电线路末端,从而提高系统的稳定性。最后,以IEEE 33节点系统为例进行仿真验证,将改进型BPSO算法和已有的3种算法进行对比,验证了改进算法具有计算时间短、网络损耗小、最大供电能力高等优点。
Abstract:
In order to achieve the purpose of multi-objective optimization of the distribution network reconstruction, a random weight method is used to construct the objective function. And in order to meet different reconstruction goals of the distribution network in different operating states, the weight of each indicator in the objective function will be dynamically adjusted according to the operating state of the power grid. An improved BPSO algorithm is proposed to increase speed in solving the binary particle swarm optimization algorithm. The improved algorithm can quickly transfer the equipment at risk to the end of the power supply line, thereby improving the stability of the system. Finally, the IEEE 33-node system is used as an example for simulation verification. By comparing the improved BPSO algorithm with three existing algorithms, it is verified that the improved algorithm has the advantages of short calculation time, small network loss, and high maximum power supply capacity.

参考文献/References:

[1] TALESKI R, RAJICIC D. Distribution network reconfiguration for energy loss reduction[J]. IEEE transactions on power systems, 1997, 12(1): 398–406.
[2] 李振坤, 路群, 符杨, 等. 有源配电网动态重构的状态分裂多目标动态规划算法[J]. 中国电机工程学报, 2019, 39(17): 5025–5036, 5284
[3] 吴泓俭, 雷霞, 刘斌, 等. 基于遗传膜算法的含风电机组和电动汽车的配电网分时段动态重构[J]. 电工技术学报, 2016, 31(2): 196–205, 220
[4] 曹昉, 张姚, 李赛. 基于网架结构相似性和适应性的主动配电网动态重构[J]. 电力系统自动化, 2019, 43(16): 78–86
[5] 张沈习, 袁加妍, 程浩忠, 等. 主动配电网中考虑需求侧管理和网络重构的分布式电源规划方法[J]. 中国电机工程学报, 2016, 36(S1): 1–9
[6] 麻秀范, 丁宁, 李龙. 配电网重构中网络辐射形与连通性的判断[J]. 电工技术学报, 2014, 29(8): 289–293
[7] 张立梅, 唐巍. 计及分布式电源的配电网前推回代潮流计算[J]. 电工技术学报, 2010, 25(8): 123–130
[8] DENG Lihua, FEI Juntao, BAN Cuiren. The simulation of self-healing restoration control for smart distribution network[C]//2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS). Beijing, China, 2015: 482–485.
[9] WANG Chaoxue, GUO Shihong, LI Changhua. Application of genetic algorithm based on gene therapy theory for distribution network reconfiguration[C]// 2008 4th International Conference on Natural Computation. Jinan, China, 2008: 551–556.
[10] NEMATSHAHI S, MASHHADI H. Distribution network reconfiguration with the application of DLMP using genetic algorithm[C]//2017 IEEE Electrical Power and Energy Conference (EPEC). Saskatoon, Canada, 2017: 1–5.
[11] 袁玉松, 钟建伟, 李沁, 等. 混合型粒子群算法在含分布式电源配电网重构中的应用[J]. 电气自动化, 2019, 41(6): 55–57,99
[12] 李晏君. 考虑可靠性的含风电配电网多目标快速重构研究[D]. 杭州:浙江大学, 2019.
[13] 俞隽亚. 基于恶劣气候条件的城市配电网风险评估及应用[D]. 北京:华北电力大学, 2015.
[14] ZHENG Ruiguan, ZHANG Zhiya, WANG Haiming, et al. Economical research of distribution network reconstruction in emigration areas[C]//2011 IEEE Power Engineering and Automation Conference. Wuhan, China, 2011: 67–70.
[15] 李振坤, 路群, 符杨, 等. 有源配电网动态重构的状态分裂多目标动态规划算法[J]. 中国电机工程学, 2019, 39(17): 5025–5036, 5284
[16] 杨明, 翟鹤峰, 马嘉翼, 等. 计及分布式电源发电不平衡度约束的三相不对称配电网动态重构[J]. 中国电机工程学报, 2019, 39(12): 3486–3499
[17] KENNEDY J, EBERHART R. A discrete binary version of the particle swarm algorithm[C]//1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Orlando, FL, USA, 1997: 4104–4108.
[18] 徐义春, 肖人彬. 一种改进的二进制粒子群算法[J]. 模式识别与人工智能, 2007, 20(6): 788–793
[19] YANG Guangyou. A modified particle swarm optimizer[C]// 2007 8th International Conference on Electronic Measurement and Instruments. Xi’an, China, 2007: 675–679.
[20] 刘路宁, 彭春华, 温泽之, 等. 基于配电网动态重构的分布式光伏消纳策略[J]. 电力自动化设备, 2019, 39(12): 56–62

备注/Memo

备注/Memo:
收稿日期:2020-01-23。
作者简介:孙旭日,男,高级工程师
通讯作者:孙旭日,E-mail:cmgj1211@163.com
更新日期/Last Update: 2020-11-27