[1]项建弘,魏俊豪.一种根据ADMM改进的图像去噪方法[J].应用科技,2020,47(4):14-19,25.[doi:10.11991/yykj.202002004]
 XIANG Jianhong,WEI Junhao.An improved image denoising method based on ADMM[J].Applied science and technology,2020,47(4):14-19,25.[doi:10.11991/yykj.202002004]
点击复制

一种根据ADMM改进的图像去噪方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年4期
页码:
14-19,25
栏目:
智能科学与技术
出版日期:
2020-07-05

文章信息/Info

Title:
An improved image denoising method based on ADMM
作者:
项建弘 魏俊豪
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
XIANG Jianhong WEI Junhao
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
图像去噪熵函数ADMM压缩感知时间开销NMSEPSNRMEA-RA-ADMM算法
Keywords:
image denoisingentropy functionADMMcompressed sensingtime overheadNMSEPSNRMEA-RA-ADMM algorithm
分类号:
TN919.81
DOI:
10.11991/yykj.202002004
文献标志码:
A
摘要:
针对图像的传输中可能会产生噪声的影响和传输时间开销过大,导致图像的恢复效果较差的问题,基于数学中熵最大的原理,提出了一种基于熵函数的去噪重构算法。将该算法运用交替方向乘子法(alternating direction method of multipliers, ADMM)分而治之的思想提出了一种新的快速去噪算法。通过归一化均方误差(normalized mean square error, NMSE)和峰值信噪比(peak signal to noise ratio, PSNR)等评价标准进行实验仿真,验证所提算法的优越性。实验结果表明:根据上面思路提出的方法具有很好的效果,在去噪方面具有一定的用途。
Abstract:
In order to solve the problem that there may be effects of factors such as noise and excessive transmission time overhead in the transmission of the image, which will result in poor image restoration effect, a denoising and reconstruction algorithm is proposed based on entropy function, which is based on the principle of maximum entropy in mathematics. A new fast denoising algorithm is proposed by using the idea of divide and conquer of alternating direction method of multipliers. The experimental simulation complying with normalized mean square error and peak signal to noise ratio evaluation criteria verifies the superiority of the proposed algorithm. The experimental results show that the proposed method has a good effect and has a certain use in denoising.

参考文献/References:

[1] 张倩. 全变分高阶模型的快速去噪算法[J]. 电子世界, 2016(13): 165-166.
[2] 江唯奕. 数字图像去噪算法原理及应用[J]. 电子制作, 2019(6): 26–28
[3] YIN X, WANG L, YUE H, et al. A new nonconvex regularized sparse reconstruction algorithm compressed sensing magnetic resonance image recovery[J]. Progress in electromagnetics research C, 2018, 87: 241–253.
[4] DONOHO D L. Compressed sensing[J]. IEEE transactions on information theory, 2006, 52(4): 1289–1306.
[5] 戴琼海, 付长军, 季向阳. 压缩感知研究[J]. 计算机学报, 2011(3): 3–12
[6] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011(7): 1651–1662
[7] TSAIG Y, DONOHO D L. Extensions of compressed sensing[J]. Signal processing, 2006(3): 549–571.
[8] BOYD, STEPHEN, PARIKH, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends in machine learning, 2010, 3(1): 1–122.
[9] WANG Yu , YIN Wotao , ZENG Jinshan . Global convergence of ADMM in nonconvex nonsmooth optimization[J]. Journal of entific computing, 2018: 1–35.
[10] HE B S, TAO M, YUAN X M. Alternating direction method with Gaussian back substitution for separable convex programming[J]. SIAM journal on optimization, 2012, 22: 313–340.
[11] CHEN C H, HE B S, YUAN X M. Matrix completion via an altemating direction method[J]. SIMA journal of numerical analysis, 2012, 32: 227–245.
[12] 王天荆, 杨震. 非线性Lp问题的极大熵方法[J]. 南京工业大学学报(自然科学版), 2008, 30(1): 59–62
[13] ZHENG Le, ARIAN MALEKI, WENG Haolei, et al. Does l p-minimization outperform l1-minimization?[J]. IEEE transactions on information theory, 2017, 63(11): 6896.
[14] TANG G, LU G, WANG Z, et al. Robust tensor principal component analysis by lp-norm for image analysis[C]// 2016 2nd IEEE International Conference on Computer and Communications (ICCC). Chengdu, China. IEEE, 2016: 751–756.
[15] SAAB R, CHARTRAND R, YILMAZ O. Stable sparse approximations via nonconvex optimization[C]// 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE Transactions on Signal Processing. Las Vegas, Nevada, U.S.A, 2008: 3885–3888.
[16] ZHANG C, HAO D, HOU C, et al. A new approach for sparse signal recovery in compressed sensing based on minimizing composite trigonometric function[J]. IEEE ACCESS, 2018, 6: 44894–44904.
[17] PANT J K, LU W, ANTONIOU A. New improved algorithms for compressive sensing based on Lp-norm[J]. IEEE transactions circuits and systems II: express briefs, 2014, 3: 198–202.
[18] RANGAN S. Generalized approximate message passing for estimation with random linear mixing[C]// In Proc IEEE Int Symp Inform Theory. Saint Petersburg, Russia, 2011: 2174–2178.
[19] CHAN S H. Performance analysis of plug-and-play ADMM: a graph signal processing perspective[J]. IEEE transactions on computational Imaging, 2019, 5(2): 274–286.
[20] BUZZARD G T, CHAN S H, SREEHARI S, et al. Plug-and-play unplugged: optimization free reconstruction using consensus equilibrium[J]. SIAM journal on imaging science, 2017, 11(3): 2001–2020.

相似文献/References:

[1]席志红,金甲,肖易寒.一种改进的基于小波偏微分方程的图像去噪方法[J].应用科技,2010,37(01):12.[doi:3969/j.issn.1009-671X.2010.01.007]
 XI Zhi-hong,JIN Jia,XIAO Yi-han.An improved algorithm for image noise removal based on wavelet transform and partial differential equations[J].Applied science and technology,2010,37(4):12.[doi:3969/j.issn.1009-671X.2010.01.007]
[2]李万臣,葛磊.基于分水岭和广义非局部平均的小波去噪[J].应用科技,2011,38(04):24.[doi:doi:10.3969/j.issn.1009-671X.2011.04.06]
 LI Wanchen,GE Lei.Wavelet denoising based on watershed and generalized non-local means[J].Applied science and technology,2011,38(4):24.[doi:doi:10.3969/j.issn.1009-671X.2011.04.06]
[3]谢克宇.基于局部像素特征的图像去噪算法[J].应用科技,2015,42(05):30.[doi:10.11991/yykj.201501015]
 XIE Keyu.An image denoising algorithm based on partial pixel characteristics[J].Applied science and technology,2015,42(4):30.[doi:10.11991/yykj.201501015]
[4]蒲定,张万远,郭骏,等.水中气体目标的多波束声呐成像与检测算法[J].应用科技,2017,44(05):12.[doi:10.11991/yykj.201609015]
 PU Ding,ZHANG Wanyuan,GUO Jun,et al.Multi-beam sonar imaging and detection algorithm of subaqueous bubbles[J].Applied science and technology,2017,44(4):12.[doi:10.11991/yykj.201609015]

备注/Memo

备注/Memo:
收稿日期:2020-02-19。
基金项目:通信抗干扰技术国家重点实验室项目(614210202030217)
作者简介:项建弘,男,副教授,博士;魏俊豪,男,硕士研究生
通讯作者:魏俊豪,E-mail:weijunhao@hrbeu.edu.cn
更新日期/Last Update: 2020-11-27