[1]郑敏华,韩国军.融合相邻单元高低页存储可靠性的闪存译码算法[J].应用科技,2020,47(3):17-23.[doi:10.11991/yykj.202003001]
 ZHENG Minhua,HAN Guojun.An improved decoding algorithm for NAND flash memory fusing the storage reliability of upper and lower pages of adjacent cells[J].Applied science and technology,2020,47(3):17-23.[doi:10.11991/yykj.202003001]
点击复制

融合相邻单元高低页存储可靠性的闪存译码算法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年3期
页码:
17-23
栏目:
现代电子技术
出版日期:
2020-07-05

文章信息/Info

Title:
An improved decoding algorithm for NAND flash memory fusing the storage reliability of upper and lower pages of adjacent cells
作者:
郑敏华 韩国军
广东工业大学 信息工程学院,广东 广州 510006
Author(s):
ZHENG Minhua HAN Guojun
School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
关键词:
NAND闪存读写机制干扰噪声阈值电压分布相邻单元BP译码算法误码率数据存储
Keywords:
NAND flash memoryread-write mechanisminterference noisedistribution of threshold voltageadjacent cellsBP decoding algorithmbit error ratedata storage
分类号:
TN919.5
DOI:
10.11991/yykj.202003001
文献标志码:
A
摘要:
结合高密度NAND闪存数据的写入与读取机制,以及高低页之间的关联关系和干扰噪声对阈值电压分布的影响特性,本文提出了一种融合相邻单元高低页存储可靠性的BP译码算法。该算法利用读取顺序和编程顺序之间的关系,通过相邻字线低页的译码信息来辅助改善高页的纠错性能。仿真实验表明,相较传统的BP译码算法,该算法在没有增加额外复杂度的情况下能有效降低高页的误码率。
Abstract:
In this paper, by fully considering the reading and writing mechanism of high-density NAND flash memory, the relationship of upper pages and lower pages, and the influence of channel noises on the distribution of threshold voltage, an improved BP decoding algorithm is proposed by fusing the storage reliability of upper and lower pages of adjacent cells. Based on the relationship between read-write order and programming order, this algorithm improves the error correction performance of upper pages with the decoding information of adjacent word lines’ lower pages. Simulation results show that the proposed algorithm effectively reduces the bit error ratio of upper pages without increasing extra complexity compared with the traditional BP decoding algorithm.

参考文献/References:

[1] CAI Yu, HARATSCH E F, MUTLU O, et al. Error patterns in MLC NAND flash memory: measurement, characterization, and analysis[C]//Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE). Dresden, German. 2012: 521-526.
[2] CAI Yu, GHOSE S, HARATSCH E F, et al. Error characterization, mitigation, and recovery in flash-memory-based solid-state drives[J]. Proceedings of the IEEE, 2017, 105(9): 1666-1704.
[3] DONG Guiqiang, XIE Ningde, ZHANG Tong. On the use of soft-decision error-correction codes in NAND flash memory[J]. IEEE transactions on circuits and systems I: regular papers, 2011, 58(2): 429-439.
[4] PENG Zishuai, HE Ruiquan, HAN Guojun, et al. Neighbor a-posteriori information assisted cell-state adaptive detector for NAND flash memory[J]. IEEE communications letters, 2019, 23(11): 1967-1971.
[5] CAI Yu, LUO Yixin, HARATSCH E F, et al. Data retention in MLC NAND flash memory: characterization, optimization, and recovery[C]//Proceedings of the IEEE 21st International Symposium on High Performance Computer Architecture (HPCA). Burlingame, USA, 2015: 551-563.
[6] CAI Yu, YALCIN G, MUTLU O, et al. Flash correct and refresh: retention-aware error management for increased flash memory lifetime[C]//Proceedings of the IEEE 30th International Conference on Computer Design (ICCD). Montreal, Canada, 2012: 94-101.
[7] MIZOGUCHI K, TAKAHASHI T, ARITOME S, et al. Data-retention characteristics comparison of 2D and 3D TLC NAND flash memories[C]//Proceedings of the IEEE International Memory Workshop (IMW). Monterey, USA, 2017: 1-4.
[8] ASLAM C A, GUAN Yongliang, CAI Kui. Decision-directed retention-failure recovery with channel update for MLC NAND flash memory[J]. IEEE transactions on circuits and systems I: regular papers, 2018, 65(1): 353-365.
[9] FAN Zhengqin, CAI Guofa, HAN Guojun, et al. Cell state- distribution-assisted threshold voltage detector for NAND Flash memory[J]. IEEE communications letters, 2019, 23(4): 576-579.
[10] DONG Guiqiang, XIE Ningde, ZHANG Tong. Enabling NAND flash memory use soft-decision error correction codes at minimal read latency overhead[J]. IEEE transactions on circuits and systems I: regular papers, 2013, 60(9): 2412-2421.
[11] RAY B, MILENKOVIC A. True random number generation using read noise of flash memory cells[J]. IEEE transactions on electron devices, 2018, 65(3): 963-969.
[12] CAI Yu, GHOSE S, LUO Yixin, et al. Vulnerabilities in MLC NAND flash memory programming: experimental analysis, exploits, and mitigation technique[C]//Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA). Austin, USA, 2017: 49-60.
[13] SUN Hongbin, ZHAO Wenzhe, LYU Minjie, et al. Exploiting intracell bit-error characteristics to improve min-sum LDPC decoding for MLC NAND flash-based storage in mobile device[J]. IEEE transactions on very large scale integration systems, 2016, 24(8): 2654-2664.
[14] ZHANG Meng, WU Fei, DU Yajuan, et al. Pair-bit errors aware LDPC decoding in MLC NAND flash memory[J]. IEEE transactions on computer-aided design of integrated circuits and systems, 2019, 38(12): 2312-2320.
[15] ASLAM C A, GUAN Yongliang, CAI Kui. Low-complexity quantization-aware belief-propagation (QA-BP) decoding for MLC NAND flash memory[C]//Proceedings of the 10th International Conference on Information, Communications and Signal Processing (ICICS). Singapore, 2015: 1-5.
[16] LIU Xingcheng, YANG Guoguan, CHEN Xuechen. Variable-node-based belief-propagation decoding with message pre-processing for NAND flash memory[J]. IEEE access, 2019, 7: 58638-58653.
[17] GUO Ting, LIU Xingcheng. A low latency decoding algorithm for grouping variable nodes on TLC NAND flash devices[C]//Proceedings of the IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). Xi’an, China, 2019: 1-3.
[18] WEI Kang, LI Jun, KONG Lingjun, et al. Page-based dynamic partitioning scheduling for LDPC decoding in MLC NAND flash memory[J]. IEEE transactions on circuits and systems II: express briefs, 2019, 66(12): 2082-2086.
[19] KSCHISCHANG F R, FREY B J, LOELIGER H. Factor graphs and the sum-product algorithm[J]. IEEE transactions on information theory, 2001, 47(2): 498-519.
[20] BEEMANN M, SCHMALEN L, VARY P. Improved decoding of binary and non-binary LDPC codes by probabilistic shuffled belief propagation[C]//Proceedings of the IEEE International Conference on Communications (ICC). Kyoto, Japan, 2011: 1-5.

相似文献/References:

[1]范正勤,韩国军.多电平闪存信道下阈值电压高效检测算法[J].应用科技,2019,46(05):57.[doi:10.11991/yykj.201901015]
 FAN Zhengqin,HAN Guojun.High-efficiency detection algorithm for threshold voltage in multi-level cell NAND flash memory[J].Applied science and technology,2019,46(3):57.[doi:10.11991/yykj.201901015]

备注/Memo

备注/Memo:
收稿日期:2020-03-01。
基金项目:国家自然科学基金项目(61871136)
作者简介:郑敏华,女,硕士研究生;韩国军,男,教授,博士生导师
通讯作者:韩国军,E-mail:gjhan@gdut.edu.cn
更新日期/Last Update: 2020-08-05