参考文献/References:
[1] 张雁鹏, 姜茜. 汽轮发电机重大事故举隅[J]. 东方电气评论, 2015, 29(1): 65-72
[2] RAHEJA D, LLINAS J, NAGI R, et al. Data fusion/data mining-based architecture for condition-based maintenance[J]. International journal of production research, 2006, 44(14): 2869-2887.
[3] BASIR O, YUAN X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information fusion, 2007, 8(4): 379-386.
[4] 董文婷. 基于大数据分析的风电机组健康状态的智能评估及诊断[D]. 上海: 东华大学, 2016.
[5] SON J, KANG D, BOO D, et al. An experimental study on the fault diagnosis of wind turbines through a condition monitoring system[J]. Journal of mechanical science and technology, 2018, 32(12): 5573-5582.
[6] XIE Lei, ZENG Jiusun, KRUGER U, et al. Fault detection in dynamic systems using the Kullback-Leibler divergence[J]. Control engineering practice, 2015, 43: 39-48.
[7] JIAO Weidong, QIAN Suxiang, CHANG Yongping, et al. Research on vibration response of a multi-faulted rotor system using LMD-based time-frequency representation[J]. EURASIP journal on advances in signal processing, 2012, 2012(1): 73.
[8] 张德利. 基于贝叶斯网络的故障智能诊断方法研究[D]. 保定: 华北电力大学(河北), 2008.
[9] 黄乃成, 顾煜炯, 谢骐宇, 等. 基于支持向量机与知识的汽轮发电机组智能故障诊断研究[J]. 现代电力, 2012, 29(11): 68-73
[10] 程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法——局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220
[11] 杨宇, 李永国, 何知义, 等. 基于LCD的齿轮箱混合故障盲源分离研究[J]. 中国机械工程, 2015, 26(8): 1062-1066
[12] 仝蕊, 康建设, 孙健, 等. 基于局部特征尺度分解与复合谱分析的齿轮性能退化特征提取[J]. 兵工学报, 2019, 40(5): 1093-1102
[13] 刘海兰, 李小平, 芮延年. 基于时域平均和Hilbert-Huang变换的时频熵理论轧机齿轮箱故障诊断[J]. 机械传动, 2011, 35(9): 54-57
[14] 李敏通, 杨青, 宋蒙, 等. 多特性参数相结合的柴油机故障振动信号特征提取与诊断[J]. 汽车工程, 2014, 36(4): 438-442
[15] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56
[16] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8
[17] 黄郑, 王红星, 于海泉, 等. 基于多模型鲁棒输入训练神经网络协同的燃气-蒸汽联合循环机组传感器故障诊断方法[J]. 中国电力, 2019, 52(11): 125-133
[18] POUR F K, PUIG V, CEMBRANO G. Health-aware LPV-MPC based on a reliability-based remaining useful life assessment[J]. IFAC-PapersOnLine, 2018, 51(24): 1285-1291.
[19] BAUR M, ALBERTELLI P, MONNO M. A review of prognostics and health management of machine tools[J]. The international journal of advanced manufacturing technology, 2020, 107(5): 2843-2863.
[20] 潘作为. 大功率电站风机振动监测及故障诊断方法研究[D]. 北京: 华北电力大学(北京), 2016.
[21] ALZGHOUL A, L?FSTRAND M, BACKE B. Data stream forecasting for system fault prediction[J]. Computers & industrial engineering, 2012, 62(4): 972-978.
[22] 胡海峰, 安茂春, 秦国军, 等. 基于隐半Markov模型的故障诊断和故障预测方法研究[J]. 兵工学报, 2009, 30(1): 69-75
[23] 杜乐. 基于状态监测数据的盘式刀库故障预测与健康管理技术研究[D]. 长春: 吉林大学, 2018.
[24] 柯赟, 宋恩哲, 姚崇, 等. 船舶柴油机故障预测与健康管理技术综述[J]. 哈尔滨工程大学学报, 2020, 41(1): 125-131
相似文献/References:
[1]王立国,杜心平.K均值聚类和孪生支持向量机相结合的高光谱图像半监督分类[J].应用科技,2017,44(03):12.[doi:10.11991/yykj.201606010]
WANG Liguo,DU Xinping.Semi-supervised classification of hyperspectral images applying the combination of K-mean clustering and twin support vector machine[J].Applied science and technology,2017,44(6):12.[doi:10.11991/yykj.201606010]
[2]田瑶瑶,张惠娟,杨忠,等.基于小波包和SOM神经网络的电作动器故障诊断[J].应用科技,2018,45(01):1.[doi:10.11991/yykj.201706023]
TIAN Yaoyao,ZHANG Huijuan,YANG Zhong,et al.Fault diagnosis of electromechanical actuator based on wavelet packet and SOM neural network[J].Applied science and technology,2018,45(6):1.[doi:10.11991/yykj.201706023]
[3]王信,汪友生.基于深度学习与传统机器学习的人脸表情识别综述[J].应用科技,2018,45(01):65.[doi:10.11991/yykj.201707008]
WANG Xin,WANG Yousheng.Facial expression recognition based on deep learning and traditional machine learning[J].Applied science and technology,2018,45(6):65.[doi:10.11991/yykj.201707008]
[4]程子一,刘志林.改进的核相关滤波算法在自航模动态目标跟踪应用[J].应用科技,2019,46(01):36.[doi:10.11991/yykj.201805009]
CHENG Ziyi,LIU Zhilin.Application of improved kernel correlation filtering algorithm in small ship dynamic target tracking[J].Applied science and technology,2019,46(6):36.[doi:10.11991/yykj.201805009]
[5]田洪晨,王立国,赵亮,等.结合波段选择的差分进化高光谱图像分类[J].应用科技,2019,46(05):45.[doi:10.11991/yykj.201811019]
TIAN Hongchen,WANG Liguo,ZHAO Liang,et al.Differential evolution hyperspectral image classification combined with band selection[J].Applied science and technology,2019,46(6):45.[doi:10.11991/yykj.201811019]
[6]胡强,屈蔷,何鑫.改进的多特征融合人行道检测算法[J].应用科技,2020,47(2):35.[doi:10.11991/yykj.201906016]
HU Qiang,QU Qiang,HE Xin.An improved sidewalk detection algorithm based on multi-feature fusion[J].Applied science and technology,2020,47(6):35.[doi:10.11991/yykj.201906016]
[7]余移山,陆继东,董美蓉,等.T91金属管道表面特性对LIBS测量的影响[J].应用科技,2020,47(4):82.[doi:10.11991/yykj.202001002]
YU Yishan,LU Jidong,DONG Meirong,et al.Study on the influence of surface characteristics of T91 metal pipeline on laser-induced breakdown spectroscopy measurement[J].Applied science and technology,2020,47(6):82.[doi:10.11991/yykj.202001002]