[1]袁培,匡波,刘鹏飞,等.钠冷快堆系统分析程序FASYS模拟失流事故的验证与确认[J].应用科技,2020,47(6):63-70.[doi:10.11991/yykj.202007007]
 YUAN Pei,KUANG Bo,LIU Pengfei,et al.Verification and validation of the sodium-cooled fast reactor system analysis code FASYS for simulating loss of flow accident[J].Applied science and technology,2020,47(6):63-70.[doi:10.11991/yykj.202007007]
点击复制

钠冷快堆系统分析程序FASYS模拟失流事故的验证与确认(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年6期
页码:
63-70
栏目:
核科学技术与应用
出版日期:
2021-01-31

文章信息/Info

Title:
Verification and validation of the sodium-cooled fast reactor system analysis code FASYS for simulating loss of flow accident
作者:
袁培 匡波 刘鹏飞 赵昱 侯捷名
上海交通大学 核科学与工程学院,上海 200240
Author(s):
YUAN Pei KUANG Bo LIU Pengfei ZHAO Yu HOU Jieming
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
系统分析程序验证与确认现象识别与排序表验证矩阵单元测试分离效应整体效应EBR-II
Keywords:
system analysis codeverification and validationphenomenon identification and ranking tableverification matrixunit testseparate effectintegrated effectEBR-II
分类号:
TL364.4
DOI:
10.11991/yykj.202007007
文献标志码:
A
摘要:
为了对钠冷快堆系统分析程序FASYS用于模拟失流事故的正确性与准确性进行测试,本文运用V&V(verification and validation)策略进行了验证与确认工作。分别介绍了现象识别与排序表、验证矩阵的建立过程,单元测试的实施过程,使用点堆方程解析解、燃料热导率随温度变化时的传热计算、SAS程序中子物理与衰变热计算、CEFR主泵工作特性4个分离效应分别验证FASYS程序点堆方程、燃料棒与冷却剂换热方程、衰变热计算方程、泵的水力方程4个模型的正确性,使用EBR-II SHRT-17、SHRT-45R这2个整体效应初步确认FASYS程序能否用于模拟钠冷快堆的失流事故的过程。结果证明了使用FASYS程序模拟失流事故可行,并具有较高的准确性。
Abstract:
In order to test the correctness and accuracy of the sodium-cooled fast reactor system analysis code FASYS for simulating loss of flow accident, the verification and validation (V&V) strategy is used for verification and validation. The establishment process of phenomenon identification and ranking table, verification matrix and the implementation process of unit test are introduced respectively. Four separate effects, including the analytical solution of point reactor equation, calculation of heat transfer when fuel thermal conductivity changes with temperature, SAS code neutron physics and decay heat calculation, CEFR main pump working characteristics, are used respectively to verify correctness and accuracy of the four models, including point reactor equation, fuel rod and coolant heat transfer equation, decay heat calculation method and pump hydraulic equation. And at the same time, the application of two integrated effects of EBR-II SHRT-17 and SHRT-45R preliminarily confirms whether the FASYS code can be used to simulate the loss of flow accident process of sodium cooled fast reactor. The results show that the FASYS code is correct and accurate for simulating the loss of flow accident.

参考文献/References:

[1] ABRAM T, ION S. Generation-IV nuclear power: A review of the state of the science[J]. Energy policy, 2008, 36(12): 4323-4330.
[2] HU B X, WU Y W, TIAN W X, et al. Development of a transient thermal-hydraulic code for analysis of China Demonstration Fast Reactor[J]. Annals of nuclear energy, 2013, 55: 302-311.
[3] 王晋, 张东辉, 胡文军. 池式钠冷快堆系统分析程序开发[J]. 原子能科学技术, 2016, 50(2): 198-203
[4] HU Rui. Verification and validation plan for the SFR system analysis module. No. ANL/NE-14/14[R/OL]. US: Argonne National Lab, 2014. https://www.osti.gov/biblio/1168234.
[5] GEFFRAYE G, ANTONI O, FARVACQUE M, et al. CATHARE 2 V2.5_2: a single version for various applications[J]. Nuclear engineering and design, 2010, 241(11): 4456-4463.
[6] 国家核安全局. 核动力厂安全分析用计算机软件开发与应用(试行)[R]. 北京: 环境保护部办公厅, 2017.
[7] NRC. Transient and accident analysis methods, regulatory guide 1.203[R/OL]. US: Nuclear Regulatory Commission, 2005. https://www.nrc.gov/docs/ML0535/ML053500170.pdf.
[8] DIAMOND D J. Experience using phenomena identification and ranking technique (PIRT) for nuclear analysis[R]. Upton, NY: Brookhaven National Laboratory, 2006.
[9] WILSON G E, BOYACK B E. The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis[J]. Nuclear engineering and design, 1998, 186(1/2): 23-37.
[10] SHAW R A, LARSON T K. Development of a phenomena identification and ranking table (PIRT) for thermal-hydraulic phenomena during a PWR LBLOCA. NUREG: CR-5074[R/OL]. Idaho: EG&G, 1988. https://www.tib.eu/en/search/id/ntis%3Asid~oai%253Ads2%253Antis%252F531a0e0a02b803781c01b1e0/Development-of-a-Phenomena-Identification-and-Ranking/.
[11] SUMNER T, HU R, FANNING T H. Verification test suite for systems analysis tools[R]. Argonne, IL, USA: Argonne National Lab, 2013.
[12] VIGIL J C. Solution of the reactor kinetics equations by analytic continuation[J]. Nuclear science and engineering, 1967, 29(3): 392-401.
[13] SUMNER T S, WEI T Y C. Benchmark specifications and data requirements for EBR-II shutdown heat removal tests SHRT-17 and SHRT-45R. No. ANL-ARC-226 Rev. 1[R]. Argonne, USA: Argonne National Lab, 2012.
[14] IAEA. Benchmark analysis of EBR-II shutdown heat removal tests. IAEA-TECDOC-1819[R/OL]. US: International Atomic Energy Agency, 2017. https://www.iaea.org/publications/12247/benchmark-analysis-of-ebr-ii-shutdown-heat-removal-tests.

备注/Memo

备注/Memo:
收稿日期:2020-07-09。
作者简介:袁培,男,硕士研究生;匡波,男,副教授,博士
通讯作者:匡波,E-mail:bkuang@sjtu.edu.cn
更新日期/Last Update: 2021-02-05