[1]张恒皞,丛惠平,赵旦峰.码率兼容空间耦合LDPC码编码器与译码器设计[J].应用科技,2020,47(6):23-29.[doi:10.11991/yykj.202008008]
 ZHANG Henghao,CONG Huiping,ZHAO Danfeng.Design of rate-compatible spatially coupled LDPC code encoder and decoder[J].Applied science and technology,2020,47(6):23-29.[doi:10.11991/yykj.202008008]
点击复制

码率兼容空间耦合LDPC码编码器与译码器设计(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年6期
页码:
23-29
栏目:
现代电子技术
出版日期:
2021-01-31

文章信息/Info

Title:
Design of rate-compatible spatially coupled LDPC code encoder and decoder
作者:
张恒皞1 丛惠平2 赵旦峰1
1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001;
2. 中国人民解放军91033部队,山东 青岛 266071
Author(s):
ZHANG Henghao1 CONG Huiping2 ZHAO Danfeng1
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2. Unit 91033, PLA, Qingdao 266071, China
关键词:
空间耦合LDPC码率兼容编码器部分校验子前项译码器最小和算法分层译码算法现场可编程门阵列
Keywords:
spatially coupled LDPC codescode rate compatibleencoderpartial syndrome formerdecodermin-sum algorithmlayered decode algorithmFPGA
分类号:
TN911.22
DOI:
10.11991/yykj.202008008
文献标志码:
A
摘要:
为了实现不同信道条件下的信道编码硬件实现方案,本文构造了一种码率兼容的空间耦合低密度奇偶校验(SC-LDPC)码,并进行了编码器与译码器的现场可编程门阵列(FPGA)实现。编码器采用部分校验子前项编码算法进行不同码率的快速递归编码。译码器采用最小和算法,结合分层译码结构完成译码。该设计在Xilinx xc7k325tffg900-2芯片上进行测试,实现了3种不同码率的空间耦合LDPC码的编码与译码功能,具有良好的译码性能和较低的资源占用率。
Abstract:
In order to realize the hardware implementation of channel coding under different channel conditions, a rate-compatible spatially coupled low density parity check code (SC-LDPC) is constructed, and the encoder and decoder are implemented in field programmable gate array (FPGA). The encoder uses partial syndrome antecedent coding algorithm to perform fast recursive coding of different code rates. The decoder uses the minimum sum algorithm, combined with a layered decoding structure to complete the decoding. The design was tested on the Xilinx xc7k325tffg900-2 chip, and realized the encoding and decoding functions of three spatially coupled LDPC codes with different code rates, with good decoding performance and low resource occupation.

参考文献/References:

[1] GALLAGER R. Low-density parity-check codes[J]. IRE transactions on information theory, 1962, 8(1): 21-28.
[2] ETSI. ETSI EN 302 307 V1.3.1 (2013-03), Digital Video Broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2)[S]. [S.l.] ETSI, 2013.
[3] 3GPP. Draft_Minutes_report_RAN1#86b_v100[EB/OL]. (2016-11-10)[2020-8-13]. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Report.
[4] IEEE. IEEE Std 802.11-2007, IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. Washington: IEEE, 2007: 1-1076.
[5] FELSTROM A J, ZIGANGIROV K S. Time-varying periodic convolutional codes with low-density parity-check matrix[J]. IEEE transactions on information theory, 1999, 45(6): 2181-2191.
[6] LENTMAIER M, SRIDHARAN A, COSTELLO D J, et al. Iterative decoding threshold analysis for LDPC convolutional codes[J]. IEEE transactions on information theory, 2010, 56(10): 5274-5289.
[7] 白宝明, 孙韶辉, 王加庆. 5G移动通信中的信道编码[M]. 北京: 电子工业出版社, 2020: 133-134.
[8] SI Zhongwei, THOBABEN R, SKOGLUND M. Rate-compatible LDPC convolutional codes achieving the capacity of the BEC[J]. IEEE transactions on information theory, 2012, 58(6): 4021-4029.
[9] MA Junyang, SI Zhongwei, HE Zhiqiang, et al. Recursive encoding of spatially coupled LDPC codes with arbitrary rates[C]//Proceedings of 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Hong Kong, China, 2015: 127-131.
[10] MITCHELL D M, LENTMAIER M, PUSANE A E, et al. Randomly punctured LDPC codes[J]. IEEE journal on selected areas in communications, 2016, 34(2): 408-421.
[11] HOU Wei, LU Shan, CHENG Jun. Rate-compatible spatially coupled LDPC code ensembles based on repeat-accumulate extensions[J]. IET communications, 2016, 10(17): 2422-2426.
[12] PUSANE A E, FELTSTROM A J, SRIDHARAN A, et al. Implementation aspects of LDPC convolutional codes[J]. IEEE transactions on communications, 2008, 56(7): 1060-1069.
[13] 王思杰. 空间耦合LDPC编码构造的研究与应用[D]. 北京: 北京邮电大学, 2017.
[14] LI Huaan, BAI Baoming, MU Xijin, et al. Algebra-assisted construction of quasi-cyclic LDPC codes for 5G new radio[J]. IEEE access, 2018, 6: 50229-50244.
[15] ZHANG Kai, HUANG Xinming, WANG Zhongfeng. High-throughput layered decoder implementation for quasi-cyclic LDPC codes[J]. IEEE journal on selected areas in communications, 2009, 27(6): 985-994.
[16] ALI I, KIM J H, KIM S H, et al. Improving windowed decoding of SC LDPC codes by effective decoding termination, message reuse, and amplification[J]. IEEE access, 2017, 6: 9336-9346.
[17] UL HASSAN N, PUSANE A E, LENTMAIER M, et al. Non-uniform window decoding schedules for spatially coupled LDPC codes[J]. IEEE transactions on communications, 2017, 65(2): 501-510.

备注/Memo

备注/Memo:
收稿日期:2020-08-13。
作者简介:张恒皞,男,硕士研究生;赵旦峰,男,教授,博士生导师
通讯作者:张恒皞,E-mail:zhanghenghao@hrbeu.edu.cn
更新日期/Last Update: 2021-02-05